

## Integrated Resource Plan Public Advisory Meeting #2

June 14, 2016



2

## Welcome & Safety Message

Bill Henley, VP of Regulatory and Government Affairs



## **Meeting Guidelines**

### Dr. Marty Rozelle, Facilitator

INDIANAPOLIS POWER & LIGHT COMPANY

3

## Agenda for today

9:00am Welcome

Meeting Agenda and Guidelines

Summary & Feedback from IRP Public Advisory Meeting #1 Stakeholder Presentations

10:25am Break

Portfolio Comparison based on Metrics

**Metrics Exercise** 

**Resource Adequacy** 

12:00 - 12:30pm Lunch

Transmission & Distribution

Load Forecast

**Environmental Risks** 

2:00pm Break

Modeling Update

Portfolio Exercise

**Closing Remarks & Next Steps** 

3:15pm Meeting Concludes



## **Meeting Guidelines**

- Time for clarifying questions at end of each presentation
- Small group discussions
- The phone line will be muted. During the allotted questions, press \*6 to un-mute your line, and please remember to press \*6 again to re-mute when you are finished asking your question.
- Use WebEx online tool for questions during meeting
- Email additional questions or comments by June 21
- IPL will respond via website by July 5



- Cause No. 42170, ECR-26
- Cause No. 44121, Green Power (GPR 9)
- Cause No. 43623, DSM 13
- Cause No. 44576, Rates (under appeal)
- Cause No. 44792, DSM 2017 Plan
- Cause No. 44794, SO<sub>2</sub> NAAQS and CCR
- Cause No. 44795, Capacity and Off System Sales Riders



## Summary & Feedback from IRP Public Advisory Meeting #1

Joan Soller, Director of Resource Planning

## **Topics covered in Meeting #1**

- IPL's IRP process and objective
- Supply side, distributed and demand side resources
- Modeling Demand Side Management (DSM) as a selectable resource
- Planning risks
- Scenario development with interactive exercise

### Scenarios Exercise from Meeting #1 -Base Case

| Scenario  | Agree                                                                                                           | Disagree                                                                                                                                                                                                                                                                                                      | Proposed Integration                                                                                                                                                                                                                                                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base Case | <ul> <li>CPP – how<br/>specifically will it<br/>be included?</li> <li>Pretty much agree<br/>with it.</li> </ul> | <ul> <li>Smart homes should<br/>be included as a<br/>technology.</li> <li>Why not include<br/>utility- owned DG?</li> <li>Fuel prices including<br/>natural gas will<br/>increase more than<br/>indicated. Where is<br/>this reflected in the<br/>scenarios? (Can run<br/>sensitivities for this.)</li> </ul> | <ul> <li>CPP will be modeled<br/>as mass-based</li> <li>IPL will incorporate<br/>energy management<br/>and its technology-<br/>based smart<br/>thermostat pilot in<br/>DSM blocks</li> <li>DG will be an input<br/>and may be customer<br/>or utility owned</li> <li>IPL will run high/low<br/>sensitivities on<br/>commodities</li> </ul> |



### Scenarios Exercise from Meeting #1 -Robust Economy

| Scenario          | Agree                                                                                                                                                                                                                                               | Disagree                                                                                                                               | Proposed Integration                                                                                                                                                                                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Robust<br>Economy | <ul> <li>Could happen,<br/>would be nice if it<br/>did.</li> <li>Agree that it's a<br/>potential future,<br/>but would not<br/>necessarily lead to<br/>increased<br/>electricity use.</li> <li>Could lead to<br/>higher DG<br/>adoption.</li> </ul> | <ul> <li>May not lead to increased use of electricity.</li> <li>Capital costs might go up due to higher costs of materials.</li> </ul> | <ul> <li>The load forecast will<br/>be a sensitivity in this<br/>scenario.</li> <li>Still thinking about<br/>how to address<br/>varying capital costs<br/>for supply side<br/>resources.</li> </ul> |

### Scenarios Exercise from Meeting #1 -Recession Economy

| Scenario             | Agree                                                                                                                                                                                                                                                                                                      | Disagree | Proposed Integration                                                                                                                                       |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recession<br>Economy | <ul> <li>Hope it doesn't happen but<br/>it could – depends on things<br/>outside of our control, e.g.<br/>exodus or influx of people to<br/>Indiana.</li> <li>A possibility. Question of<br/>whether shrinking industrial<br/>base is unique to this<br/>scenario – could happen in<br/>others.</li> </ul> | • N/A    | <ul> <li>Will likely run<br/>high/low load forecast<br/>sensitivities in other<br/>scenarios to<br/>incorporate potential<br/>recession effects</li> </ul> |

# Scenarios Exercise from Meeting #1 - Strengthened Environmental Rules

| Scenario                               | Agree                                          | Disagree                                                                                                                                                                  | Proposed Integration                                                                                                                                            |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strengthened<br>Environmental<br>Rules | <ul> <li>Carbon tax is<br/>possible</li> </ul> | <ul> <li>What if the Renewable<br/>Portfolio was federal or<br/>state? Could be part of<br/>the CPP.</li> <li>(Would probably have<br/>about the same impact.)</li> </ul> | <ul> <li>In this scenario, there<br/>will be a 20% RPS in<br/>2022 based on a<br/>national average. This<br/>could be federal or<br/>state proposed.</li> </ul> |

### Scenarios Exercise from Meeting #1 - High Customer Adoption of DG

| Scenario                           | Agree                                                                                                                                                                                                                                          | Disagree | Proposed Integration                                                                                                                                                          |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Customer<br>Adoption of<br>DG | <ul> <li>There are reasons other<br/>than economic to go to<br/>DG. Residents seem to be<br/>more attracted,<br/>businesses less attracted.</li> <li>Possible. If it's cost-<br/>effective there would be<br/>more community solar.</li> </ul> | • N/A    | <ul> <li>There will be some DG<br/>embedded in this<br/>scenario as a proxy for<br/>customers who will<br/>choose DG for reasons<br/>in addition to<br/>economics.</li> </ul> |



# Additional stakeholder interaction

- Since the April meeting, IPL met with the following stakeholders:
  - IURC
  - OUCC
  - CAC
  - Sierra Club
  - Citizens Energy



# Additional stakeholder interaction (cont'd)

- Continue to involve stakeholders in developing assumptions
- Consider C&I customer input in load forecast
- Consider discrete DSM bundles
- Coordinate planning efforts with Citizens Energy
- Consider more expansive sensitivities

## Meeting #1 materials

- Approximately 20 stakeholders participated
- Presentation materials, audio recording, acronym list, and meeting notes are available on IPL's IRP webpage here: <u>https://www.iplpower.com/irp/</u>



## **Questions**?

# Stakeholder Presentations

Presenter #1: Denise Abdul-Rahman, Environmental Climate Justice Chair, NAACP Indiana Presenter #2: Dr. Stephen Jay, Professor, IU Fairbanks School of Public Health Presenter #3: Larry Kleiman, Executive Director, Hoosier Interfaith Power & Light Presenter #4: Jodi Perras, Indiana Campaign Representative, Sierra Club Beyond Coal



## **Short Break**



## Portfolio Comparison based on Metrics

Megan Ottesen, Regulatory Analyst







# Portfolios will result from each of these scenarios

- Base Case
- Robust Economy
- Recession Economy
- Strengthened Environmental Rules
- High Customer Adoption of Distributed Generation

## Introduction to metrics

- IPL will use several metrics to compare the benefits and costs of each scenario's portfolios
- In past IRPs, IPL primarily evaluated portfolios in costs measured by Present Value Revenue Requirement (PVRR)
- In addition to cost, IPL is considering the following categories to measure portfolio performances:
  - Financial risk
  - Environmental stewardship
  - Reliability



| Cost                                                                                              | Financial Risk                                       | Environmental<br>Stewardship                                                                          | Reliability                                                    |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| <ul> <li>Present<br/>Value<br/>Revenue<br/>Requirement<br/>(PVRR)</li> <li>Rate Impact</li> </ul> | <ul> <li>Cost<br/>Variance Risk<br/>Ratio</li> </ul> | <ul> <li>Annual<br/>average CO<sub>2</sub><br/>emissions</li> <li>CO<sub>2</sub> intensity</li> </ul> | <ul> <li>Planning<br/>Reserves</li> <li>Flexibility</li> </ul> |



### Present Value Revenue Requirement (PVRR):

 The total plan cost (capital and operating) expressed as the present value of revenue requirements over the study period

**PVRR =** Present Value of Revenue Requirements over the study period

### **PVRR Example**

PVRR (2015-2064)



### Source: IPL 2014 IRP



### Present Value Revenue Requirement (PVRR):

 The total plan cost (capital and operating) expressed as the present value of revenue requirements over the study period

**PVRR =** Present Value of Revenue Requirements over the study period

### **Rate Impact:**

- expressed in terms of cents/kWh for years 1-10 and 11-20
- Levelized average system cost

Rate Impact = <u>\$ Total Revenue Requirements (10 yr period)</u> Total kWh Sales (10 yr period)





Source: TVA 2015 IRP

### **Financial Risk Metrics**

### **Cost Variance Risk Ratio:**

- Shows how likely costs are to be higher or lower than the expected cost
- Ratio of how high costs could be to how low costs could be
- Calculated based on
  - Mean PVRR
  - Range of possible costs higher than mean PVRR
  - Range of possible costs lower than mean PVRR

Cost Variance Risk Ratio = <u>95<sup>th</sup> Percentile (PVRR) – Mean (PVRR)</u> Mean (PVRR) – 5<sup>th</sup> Percentile (PVRR)

Score less than 1.0: costs are more likely to be <u>lower</u> than mean PVRR

- Score greater than 1.0: costs are more likely to be higher than mean PVRR



### Cost Variance Risk Ratio (lower has less risk)



Source: TVA 2015 IRP

Strategy = Portfolio

## Environmental Stewardship Metrics

### Annual Average CO<sub>2</sub> emissions (tons)

- the annual average tons of CO<sub>2</sub> emitted over the study period

Annual Average CO<sub>2</sub> Emissions = <u>Sum of CO<sub>2</sub> tons emitted</u> # of years in the study period

### CO<sub>2</sub> intensity (tons/MWh)

CO<sub>2</sub> Intensity for study period

 $CO_2$  Intensity for study period = <u>Sum of  $CO_2$  tons emitted</u> MWh energy generated



### **Planning Reserves:**

• MW of supply above peak forecast

**Planning Reserves = IPL's resources (MW) - utility load forecast (MW)** 





## Reliability Metrics

### **Planning Reserves:**

MW of supply above peak forecast

**Planning Reserves = IPL's resources (MW) - utility load forecast (MW)** 

### Flexibility:

• Ability of IPL's system to respond to load changes

**Calculation** = TBD open to input

### **Flexibility:** (higher is more flexible)



Source: TVA 2015 IRP


| Cost                                                                                              | Financial Risk                                       | Environmental<br>Stewardship                                                                          | Reliability                                                    |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| <ul> <li>Present<br/>Value<br/>Revenue<br/>Requirement<br/>(PVRR)</li> <li>Rate Impact</li> </ul> | <ul> <li>Cost<br/>Variance Risk<br/>Ratio</li> </ul> | <ul> <li>Annual<br/>average CO<sub>2</sub><br/>emissions</li> <li>CO<sub>2</sub> intensity</li> </ul> | <ul> <li>Planning<br/>Reserves</li> <li>Flexibility</li> </ul> |



# **Metrics Exercise**



# **Resource Adequacy**

#### Ted Leffler, Senior Risk Management Analyst



- IRP process focuses on the <u>future</u> portfolio of resources needed to meet the
  - peak and
  - energy
  - needs of our customers.
- Resource Adequacy (RA) focuses on <u>peak</u> needs
- Resource Adequacy is the responsibility of the regulated utilities (part of the obligation to serve)
- MISO administers a short term Resource Adequacy construct
  - MISO is not responsible for Resource Adequacy
  - MISO's construct is focused on <u>existing</u> not future resources

# Definitions (1 of 5)

- Resource Adequacy
  - ensuring that IPL has sufficient Resources to meet anticipated <u>peak</u> <u>demand</u> requirements plus an appropriate planning reserve

#### • RA Time Horizon

- Resource Adequacy = > year out
- MWs
  - Measure of power
  - -1 MW = 1,340 Horsepower

# Definitions (2 of 5)

#### Peak Demand

- Instantaneous measure of the highest usage for a given period of time
- Measured in MWs
  - MISO peak demand for summer 2017 estimate
     at about 123,000 MWs
     (165 million horsepower)
  - IPL peak demand for summer of 2017 estimate at about 2,900 MWs (3.9 million horsepower)



#### **Definitions (3 of 5)**

#### Peak Demand

- Instantaneous measure of the highest usage for a given period of time

- In the Midwest and at IPL the peak demand typically occurs in the summer





# Definitions (4 of 5)

- Planning Reserve MWs
  - MW difference between the Peak forecast and generating unit availability
- Planning Reserve Margin (PRM)
  - The percentage of resources above the Peak forecast



# Definitions (5 of 5)

#### • Target Planning Reserve Margin

#### (Target PRM)

- The percentage of resources above the Peak forecast needed to cover forecast and unit availability uncertainty
- Calculated by MISO each November for the following summer
- -Result of the "Loss of Load Expectation Study"
- This analysis produces a PRM that is expected to result in a loss of load event once every 10 years

#### • Planning Reserve Margin Requirement (PRMR)

- MWs needed to meet the Peak forecast\_plus minimum MWs needed\_to cover potential for higher than normal peaks and lower than normal generating unit availability
- PRMR = PEAK LOAD FORECAST X (1+Target PRM)
- Calculated by MISO each November for the following summer
- Typically around 14%: 7% for forecast uncertainty, 7% for availability uncertainty



### Planning to Provide Resource Adequacy

- IPL plans to meet the peak plus reserves with the following:
  - Demand Side Management Programs
  - IPL Generating Assets
  - Long Term Contracted Generating Assets
  - Balance of needs or excesses are purchased or sold in MISO capacity markets<sup>1</sup>

Footnote 1:

- Each year, prior to the summer, resource owners in MISO test the capacity level for each resource
- MISO populates an accounting system with 1 capacity credit for each MW of capacity
- Capacity credits can be purchased and sold
- Capacity credit sales do not impact energy sales
- Each utility with load must have capacity credits equal to its PRMR in the accounting system prior to the summer



- Resource Adequacy
   (RA) Process
  - Given current portfolio of resources
    - and future projected peak needs
    - and future projected energy needs
  - What portfolio of resources will be used to meet those needs?



### MISO's RA Process

- In Indiana, RA Process is the responsibility of the Utilities
- IRP process and the certificate of need process are regulated by the State, and the responsibility of the 'obligation to serve' resides with the utilities
- MISO has a Resource Adequacy process but MISO is not responsible for Resource Adequacy
- IRP process is focused on the long term (several years out)
  - Focus is on future portfolio of resources
- The MISO Resource Adequacy process is focused on the short term: less than a year out
  - Focused on existing resources





# MISO's role is an administrator of a reserving sharing pool

- This reserve sharing pool allows utilities to benefit from the diversity of resources across MISO
- Investments in and deployment of resources is lumpy
- Some utilities are slightly short, others slightly long of meeting their RA targets
- MISO's RA construct allows utilities that are temporarily short of meeting their RA target to purchase capacity credits from utilities that have more than enough resources to meet their short term RA targets
- Capacity credits are based on existing resources
- MISO capacity credits do not reflect the future value of adding resources or DSM

### Key Takeaways

- IRP process must consider the future peak and energy needs of our customers
- Resource Adequacy (RA) focuses on peak needs
- Resource Adequacy is the responsibility of the regulated utilities (part of the obligation to serve)
- MISO administers a short term Resource Adequacy construct
  - MISO is not responsible for Resource Adequacy
  - MISO's construct is focused on <u>existing</u> not future resources



# **Questions**?



# Lunch Break



# **Transmission & Distribution**

#### Mike Holtsclaw, Director of Engineering

#### Transmission Planning Organization



IPL has a dedicated Transmission Planning group within the Customer Operations Organization

# IPL Transmission Planning

- IPL performs near term system studies for 1-5 years out and long term reliability planning studies for 10 years out
  - Studies are performed for on peak load, off peak load, and sensitivity cases looking for deficiencies on the transmission system
  - Steady state Power Flow studies show thermal (Rating) and voltage limits of the IPL transmission system
- Dynamic studies (0 to 20 seconds) show how the system performs to events
- IPL must also comply with the mandatory NERC Reliability Standards

### IPL Transmission Planning (cont'd)

- The results of the studies are analyzed for deficiencies in the system such as thermal ratings that are exceeded on equipment such as transmission lines or transformers
- For the dynamic studies, voltage recovery times, and generation synchronization are analyzed to see that they meet IPL's planning criteria

#### MISO Transmission Planning Coordination

- MISO performs various planning studies for the full MISO footprint and for the three planning regions
- IPL is part of the MISO Central Planning region
- MISO will identify market efficiency projects and reliability projects for possible inclusion in their MISO Transmission Expansion Plan (MTEP)
- IPL participates in the MTEP studies and stakeholder groups to advocate solutions for customers



# Recent IPL Transmission System Upgrades

- Projects to Improve Reliability for Summer 2016
  - Upgraded 345/138 kV auto transformer from 275 MVA to 500 MVA, included 138 kV bus modification to a ring bus arrangement
  - Installed the 275 MVA 345/138 kV auto transformer at another substation
  - Installed a 138 kV Static VAR Compensator +300/-100 MVAR for transient voltage support

### Recent IPL Transmission System Upgrades (cont'd)

- Projects to Support New Eagle Valley CCGT (COD Spring 2017)
  - New 23 mile 138 kV line (Eagle Valley Franklin Twp)
  - 138 kV Breaker Upgrades (Mooresville, Southport)
  - 138 kV Line Rating Upgrades
    - Eagle Valley Southport
    - Eagle Valley Glenns Valley
  - New 138 kV Capacitor Bank
- MISO MTEP Upgrade Petersburg AEP Sullivan 345 kV line

# **Distribution Planning**

- Continuously reviews distribution system and develops a 5 year construction plan for new primary feeder circuits and substation capacity additions
- While distribution system load growth is relatively flat, neighborhood and commercial revitalization serves as a catalyst to improve existing circuits or extend new facilities
- Distributed Generation (DG) is also incorporated into the planning process through interconnection studies
- IPL has flexibility to switch loads due to compact service territory
- Recent distribution automation/smart grid deployment of >95% of the system supports remote switching operation



# Smart Grid Project served as a catalyst

- Leveraged Department of Energy \$20m grant toward \$52m cost from 2010 to 2013
- Integrated holistic approach to include metering, distribution
   automation projects and customer facing technologies
- Sustainable solutions

DEPARTMENT OF

ENERGY

# Customer Systems have been deployed

- Customer Energy Management
  - Online Energy Feedback (PowerView<sup>®</sup>) for all customers
- Electric Vehicle Support
  - ~160 home, business & public chargers
  - Special rates
- Customer Web Engagement Tools
  - Smart grid education and outage reporting
  - Program enrollment for DSM

#### Distribution Automation Devices Currently Used Daily (1 of 3) 1. Central Business District Network Relays

- Central Business District Network Relays & Fault Indicators
  - Relays provide better protection
  - Fault indicators speed fault location and reduces cable damage
- 2. Digital Feeder Relays
  - Allows integration of DG onto the feeder
  - Reduced O&M costs by allowing reclosing to be turned off remotely
  - Provides 3 Phase currents, for better utilization of capacity
  - Distance to fault, reduces outage time
  - Feeder VAR readings integrated with capacitor control system to minimize substation and feeder losses



# Distribution Automation Devices Currently Used Daily (2 of 3)

- 3. Recloser Installations on Primary Circuits
  - Reduces number of complete circuit lockouts
  - Reduces number of customers affected by an outage
  - Speeds restoration as they can be controlled remotely through the dSCADA system
- 4. Smart Capacitor Bank Controls
  - Better voltage regulation on distribution feeders
  - Ability to change setting from central locations



# Distribution Automation Devices Currently Used Daily (3 of 3)

- 5. Load Tap Changer Controls
  - Key to Conservation Voltage Reduction (CVR) program settings can be changed remotely
  - CVR program is 20 MW of capacity
  - Tap changer operations recorded in historical database
- 6. Transformer On-line Monitoring
  - Improved asset health monitoring
  - Quicker indication of possible problems
- 7. Substation Security & Infrared Monitoring
  - Improved security and allows for quicker response when intruders are detected
  - Infrared Monitoring provides continuous monitoring of critical equipment

# Smart Energy Project Successes

- Increased reliability from mid-point reclosers which reduce circuit lockouts and number of customers affected
- Improved personnel safety through remote operation of overhead and underground equipment
- Leverage data for distribution asset management
- Avoided truck rolls in 2015 total over 91,000
- Better information for operational and long-term
   decision making



# **Questions**?



# Load Forecast

#### Eric Fox, Director Forecast Solutions, Itron Inc.

# Forecast Overview

- 1. Energy Trends Why the disconnect between economic growth (GDP) and electricity use
- 2. Long-term Forecast Approach
  - Capturing end-use efficiency improvements
- 3. Forecast Model and Base Case Forecast Overview
  - 1. Residential
  - 2. Commercial
  - 3. Industrial
  - 4. Energy and Peak
- 4. Forecast Sensitivity
- 5. Summary

#### **Top-Level Look**

#### Indiana GDP vs. Electricity Consumption



#### Why the disconnect?

- Strong residential appliance and commercial equipment efficiency improvements
  - Implementation of new end-use efficiency standards
- Increase in utility and state sponsored efficiency program activity
- Increasing share of less energy-intensive industries
- Smaller home square footage increasing share of multifamily homes
- Changing demographics smaller families and slower household formation growth
- Slower household income growth

#### End-Use Efficiency Impact




ASAP APPLIANCE STANDARDS AWARENESS PROJECT



http://www.appliance-standards.org/

## The Problem with using GDP as a Primary Forecast Driver

- GDP is correlated with electric sales, but GDP does not cause electric sales
- We use the stuff that uses electricity-
  - We light our homes
  - We refrigerate and cook our food
  - We vacuum up after the kids and dog
  - We dry our clothes
  - We watch TV



It's the other way around. Electricity generation and the things we buy are inputs into GDP





- To the extent possible, we want to estimate forecast models of causation and not correlation
- That means understanding how changes in the technology we use at home and at work impacts our energy needs
- In addition to GDP as an economic variable

## Forecast Modeling Framework



## **Forecast Models**

- Forecasts are based on monthly regression models using tenyears of billed sales and customer data (January 2005 to March 2016)
- Sales Models
  - Residential and commercial models estimated using a blended end-use/econometric modeling framework
  - Industrial sales are estimated with a generalized econometric model
  - Small rate classes such as process heating, security lighting, and street lighting are estimated using simple trend and seasonal models
- Demand Model
  - Monthly system peak model based on heating, cooling, and baseuse energy requirements derived from the sales forecast models

# Models estimated at rate schedule level



Percentage of 2015 Annual Sales

#### 2015 Sales and Average Annual Customers

| Rate    | Rate     |                              |           |            |             |
|---------|----------|------------------------------|-----------|------------|-------------|
| Class   | Schedule | Definition                   | Customers | MWh        | Avg_kWh     |
| RES     | RS       | General Service              | 246481    | 2342108    | 9,502       |
| RES     | RH       | Electric Heat                | 150498    | 2,323,908  | 15,441      |
| RES     | RC       | Electric Water Heat          | 32022     | 406,586    | 12,697      |
| Sml Com | SS       | General Service              | 46,153    | 1,228,878  | 26,626      |
| Sml Com | SH       | GS All Electric              | 4,035     | 562,864    | 139,495     |
| Sml Com | SE       | GS Electric Heat             | 3,357     | 19,383     | 5,774       |
| Sml Com | СВ       | GS Water Heat (Controlled)   | 95        | 432        | 4,549       |
| Sml Com | UW       | GS Water Heat (Uncontrolled) | 84        | 1,506      | 17,923      |
| Sml Com | APL      | GS Security Lighting         | 364       | 31,620     | 86,868      |
| Lrg Com | SL       | Secondary Service            | 4,539     | 3,504,652  | 772,120     |
| Lrg Com | PL       | Primary Service              | 142       | 1,260,060  | 8,873,662   |
| IND     | HL1      | High Load Factor 1           | 28        | 1,373,248  | 49,044,571  |
| IND     | HL2      | High Load Factor 2           | 5         | 225,376    | 45,075,200  |
| IND     | HL3      | High Load Factor 3           | 3         | 345,920    | 115,306,667 |
| IND     | APL      | Ind Security Light           | 364       | 5,725      | 15,728      |
| Other   | ST       | Street Lighting              |           | 53,280     |             |
| Total   |          |                              | 488,170   | 13,685,546 | 28,034      |



## **Residential Model**



## Residential End-Use Intensity Trends



## **Residential Economic Drivers**



- Marion County Economic Forecast
- Blended Woods & Poole near-term forecast with Moody Analytics longterm forecast
- Price projections developed by IPL





#### \*AAGR=Average Annual Growth Rate

ß





## **Commercial Model Framework**



## Commercial End-Use Intensities



## Commercial Economic Drivers



- Indianapolis MSA
- Blended Woods & Poole (in the nearterm) and Moody Analytics in the long-term)
- Weighted economic variable: 80% employment/20% GDP

\*AAGR=Average Annual Growth Rate





## Industrial Model Framework

• Industrial sales are estimated with a generalized econometric model



## Industrial Economic Drivers



- Indianapolis MSA
- Blended Woods & Poole (near-term) and Moody Analytics long-term
- Strong employment weighting

\*AAGR=Average Annual Growth Rate





### Comparison of GDP forecasts -Indianapolis Metropolitan Statistical Area (MSA)



Near-Term based on Woods & Poole GDP Forecasted Growth

## Class Sales Forecast (before EE program savings)







## Energy & Peak Forecast



## **Forecast Sensitivity**

- "Strong Economy"
  - Based on Moody Analytics "stronger near-term rebound" scenario for the Indianapolis MSA
- "Weak Economy"
  - Based on Moody Analytics "protracted slump" scenario for the Indianapolis MSA







- Relatively strong customer growth and business activity
- But slow energy and demand growth
  - Sales growth is mitigated by continued improvement in end-use efficiency coupled with IPL's energy efficiency program activity
- The blended end-use/econometric model works extremely well in capturing the impact of improvements in end-use efficiency as well as customer and economic growth



## **Questions**?



## **Environmental Risks**

## Angelique Collier, Director of Environmental Policy

## **Current Environmental Controls for Coal-Fired Generation**

| Unit         | In<br>Service<br>Date | Generating<br>Capacity<br>(MW) | SO <sub>2</sub> Control | NO <sub>x</sub> Control  | PM Control                    | Hg Controls             |
|--------------|-----------------------|--------------------------------|-------------------------|--------------------------|-------------------------------|-------------------------|
| Petersburg 1 | 1967                  | 232                            | Scrubber<br>(1996)      | LNB (1995)               | ESP (1967)                    | ACI (2015)<br>SI (2015) |
| Petersburg 2 | 1969                  | 435                            | Scrubber<br>(1996)      | LNB (1994)<br>SCR (2004) | Baghouse (2015)               | ACI (2015)<br>SI (2015) |
| Petersburg 3 | 1977                  | 540                            | Scrubber<br>(1977)      | SCR (2004)               | ESP (1986)<br>Baghouse (2016) | ACI (2016)<br>SI (2016) |
| Petersburg 4 | 1986                  | 545                            | Scrubber<br>(1986)      | LNB (2001)               | ESP (1986)                    | ACI (2016)<br>SI (2016) |

SO<sub>2</sub> = Sulfur dioxide NO<sub>x</sub> = Nitrogen oxides MW = Mega Watts ACI = Activated Carbon Injection ESP = Electricstatic Precipitator SCR = Selective catalytic reduction LNB = Low NO<sub>x</sub> Burners SI = Sorbent Injection

# **Environmental Regulations**

- Recent Environmental Regulations/Projects
  - Mercury and Air Toxics Standard (MATS)
  - NPDES Water Discharge Permits
  - Cross State Air Pollution Rule (CSAPR)
- Future Environmental Regulations
  - 316(b) Cooling water intake structures
  - Office of Surface Mining
  - Clean Power Plan (CPP)
  - Coal Combustion Residuals (CCR)
  - Effluent Limitations Guidelines (ELG) Rule
  - National Ambient Air Quality Standards (NAAQS)

NPDES= National Pollutant Discharge Elimination System

## **Recent Environmental Regulations**

- MATS
  - Mercury and other air toxics from utilities
  - Compliance date: April 2016
  - Ceased coal-combustion on older, smaller coal-fired units
  - \$450 million in new and upgraded air pollution controls at Petersburg

#### NPDES

- New metal limits for Harding Street and Petersburg
- Compliance date: September 2017
- Cease coal-combustion at Harding Street Unit 7
- Scrubber wastewater treatment system and dry fly ash handling at Petersburg
- \$250 million in wastewater treatment
- CSAPR
  - Phase I effective January 2015; Phase II January 2017
  - Existing controls and purchase of allowances on the open market

# Future Environmental Regulations - NAAQS and CSAPR

- National Ambient Air Quality Standards (NAAQS)
  - PM2.5 and Ozone
    - Lowered standards
    - IPL areas designated or expected to be designated at attainment
- Cross State Air Pollution Rule Ozone Update
  - Proposed December 3, 2015
  - Would address lowered 2008 Ozone standard
  - Lower Ozone Season allowances allocated
  - Compliance through additional purchase of allowances or additional  $\mathrm{NO}_{\mathrm{x}}$  controls

 $\label{eq:nabla} \begin{array}{l} \mbox{NAAQS} = \mbox{National Ambient Air Quality Standards} \\ \mbox{CAIR} = \mbox{Clean Air Interstate Rule} \\ \mbox{PM}_{2.5} = \mbox{Particulate Matter less than 2.5 microns in diameter} \end{array}$ 

SO<sub>2</sub> = Sulfur Dioxide SCR = Selective catalytic reduction EPA = Environmental Protection Agency

## Future Environmental Regulations -Cooling Water Intake Structures Rule

- Final Rule published August 2014
- Regulates environmental impact from cooling water intake structures (CWIS)
  - Impingement and entrainment of aquatic species
  - Closed cycle cooling systems may be required
- Studies underway to determine impact
  - Eagle Valley and Harding Street already equipped with closed cycle cooling.
  - Two of four Petersburg units fully equipped with closed cycle cooling
- Compliance required in 2020 or later



### Future Environmental Regulations -Office of Surface Mining Rule

- Proposed Rule expected in 2016
- Would regulate placement of ash as backfill in mines
- If backfill prohibited, IPL Petersburg may require expansion of onsite landfill

## Future Environmental Regulations -Clean Power Plan

- Final Rule published August 23, 2015
- Requires carbon dioxide emissions reductions
  - Indiana must develop a State Plan or be subject to Federal Plan
  - May be achieved through
    - Heat rate improvements;
    - Re-dispatch from coal to new renewables or existing NGCCs; or
    - Other measures.
- New Eagle Valley NGCC not subject to Rule
- Harding Street will comply by combusting natural gas
- Rule stayed by SCOTUS pending legal resolution
  - Initial State Plan deadline of September 6, 2016 no longer in place
  - Compliance deadline likely delayed by 18 months or longer

NGCC = Natural Gas Combined Cycle SCOTUS = Supreme Court of the U.S.



## Future Environmental Regulations -Clean Power Plan Allocations

| Plant Name     | Boiler ID | Unit's First Period<br>Allocation (short tons)<br>2022-2024 | Unit's Second Period<br>Allocation (short tons)<br>2025-2027 | Unit's Third Period<br>Allocation (short tons)<br>2028-2029 | Unit's Final<br>Allocation<br>(short tons)<br>2030-2031 |
|----------------|-----------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Harding Street | 50        | 397,900                                                     | 382,078                                                      | 359,864                                                     | 346,958                                                 |
| Harding Street | 60        | 365,218                                                     | 350,695                                                      | 330,305                                                     | 318,460                                                 |
| Harding Street | 70        | 1,712,557                                                   | 1,644,458                                                    | 1,548,847                                                   | 1,493,304                                               |
| Petersburg     | 1         | 968,248                                                     | 929,747                                                      | 875,690                                                     | 844,287                                                 |
| Petersburg     | 2         | 1,808,953                                                   | 1,737,021                                                    | 1,636,028                                                   | 1,577,359                                               |
| Petersburg     | 3         | 2,356,018                                                   | 2,262,332                                                    | 2,130,797                                                   | 2,054,384                                               |
| Petersburg     | 4         | 2,222,084                                                   | 2,133,724                                                    | 2,009,666                                                   | 1,937,597                                               |
| Total          |           | 9,830,978                                                   | 9,440,055                                                    | 8,891,197                                                   | 8,572,349                                               |



## **Model Assumptions and Inputs**

### Potential Impacts of Environmental Regulations

| Regulation                                      | Expected<br>Implementation<br>Year | Cost Range<br>Estimate<br>(\$MM) | Assumed Technology               |
|-------------------------------------------------|------------------------------------|----------------------------------|----------------------------------|
| Office of Surface Mining                        | 2018                               | 0-15                             | Onsite Landfill                  |
| Cooling Water Intake<br>Structure               | 2020                               | 10-160                           | Closed Cycle Cooling             |
| Ozone National Ambient<br>Air Quality Standards | 2020                               | 0-150                            | Selective Catalytic<br>Reduction |



## Questions? Part 1



## **Short Break**



Upcoming Environmental Regulations - Coal Combustion Residuals (CCR) Rule

- Final rule published April 2015
- Regulates ash as non-hazardous waste
  - Minimum criteria for ash ponds
  - Closure and post-closure requirements
- HS and EV ponds will be closed because ceased coal combustion
- Petersburg ponds must meet minimum criteria or cease use and close
  - Pond closure would require system to handle bottom ash
  - Closed-loop bottom ash handling system


Future Environmental Regulations -Effluent Limitations Guidelines (ELG) Rule

- Final rule published November 2015
- Technology-based standard regulating wastewater
  - Scrubber wastewater treatment
  - Dry fly ash handling
  - Dry or closed-loop bottom ash handling
- No impact at Harding Street or Eagle Valley
- Petersburg compliant due to other requirements
  - NPDES
  - CCR

#### Upcoming Environmental Regulations - SO<sub>2</sub> NAAQS

- HS and EV comply by combusting natural gas
- Compliance required in 2017
- More stringent limits at Petersburg will require improved SO<sub>2</sub> control
  - Dibasic acid injection
  - Emergency ball mill
  - Emergency limestone conveyance
  - Unit 1 & 2 switch gear

NAAQS = National Ambient Air Quality Standards SO<sub>2</sub> = Sulfur Dioxide



### **Model Assumptions and Inputs**

#### Upcoming Impacts of Environmental Regulations

| Regulation                                                | Expected<br>Implementation<br>Year | Cost<br>Estimate<br>(\$MM) | Assumed Technology              |
|-----------------------------------------------------------|------------------------------------|----------------------------|---------------------------------|
| Effluent Limitations<br>Guidelines                        | 2018                               | 0                          | None                            |
| Coal Combustion<br>Residuals                              | 2018                               | 47                         | Bottom Ash Dewatering<br>System |
| SO <sub>2</sub> National Ambient Air<br>Quality Standards | 2017                               | 48                         | FGD Improvements                |



# Questions? Part 2



## **Short Break**



# **Modeling Update**

#### Joan Soller, Director of Resource Planning

# Modeling work continues

- Updated NG, market price, capacity cost and environmental inputs
- Refreshed existing resource information
- Fine-tuned supply resource parameters
- Created DSM bundles
- Updated load forecast
- Ran initial base case scenario



#### **Henry Hub Annual Gas Prices**



Source: ABB 2015 Fall Reference Case in nominal dollars







Source: ABB 2015 Fall Reference Case in nominal dollars



#### **Capacity Cost Input**



Source: Market Transactions and ABB 2015 Fall Reference Case





Source: ABB 2015 Fall Reference Case in nominal dollars



#### **Carbon Price**



Source: ABB Fall 2015 Reference Case and ICF Federal Legislation

\*Price is in nominal dollars

## DSM bundles from Market Potential Study

- 1. EE Res Other (up to \$30/MWh)
- 2. EE Res Other (\$60+ /MWh)
- 3. EE Res Other (\$30-60/MWh)
- 4. EE Res Lighting (up to \$30/MWh)
- 5. EE Res HVAC (up to \$30/MWh)
- 6. EE Res HVAC (\$60+ /MWh)
- 7. EE Res HVAC (\$30-60/MWh)
- 8. EE Res Behavioral Programs
- 9. EE Bus Process (up to \$30/MWh)
- 10. EE Bus Process (\$30-60/MWh)
- 11. EE Bus Other (up to \$30/MWh)
- 12. EE Bus Other (\$60+ /MWh)
- 13. EE Bus Other (\$30-60/MWh)

- 14. EE Bus Lighting (up to \$30/MWh)
- 15. EE Bus Lighting (\$60+ /MWh)
- 16. EE Bus Lighting (\$30-60/MWh)
- 17. EE Bus HVAC (up to \$30/MWh)
- 18. EE Bus HVAC (\$60+ /MWh)
- 19. EE Bus HVAC (\$30-60/MWh)
- 20. DR Water Heating DLC
- 21. DR Smart Thermostats
- 22. DR Emerging Tech
- 23. DR Curtail Agreements
- 24. DR Battery Storage
- 25. DR Air Conditioning Load Mgmt

EE = Energy Efficiency DR = Demand Response



**Residential HVAC Bundle - Loadshape** 



### Initial base model run results





\*Batteries were modeled as "peakers" without additional grid benefits. Technology and market changes may affect implementation timing.

| YEAR | Base*                           |
|------|---------------------------------|
| 2017 | DSM - 21 MW                     |
| 2018 | DSM - 23 MW                     |
| 2019 | DSM - 17 MW                     |
| 2020 | DSM - 13 MW                     |
| 2021 | DSM - 12 MW                     |
| 2022 | DSM - 12 MW                     |
|      | Retire HS GT 1 & 2 (-32 MW) Oil |
| 2023 | DSM - 12 MW                     |
| 2024 | DSM -13 MW                      |
| 2025 | DSM - 13 MW                     |
| 2026 | DSM - 11 MW                     |
| 2027 | DSM - 6 MW                      |
| 2028 | DSM - 7 MW                      |
| 2029 | DSM - 3 MW                      |
| 2030 | DSM - 4 MW                      |
|      | Retire HS 5 & 6 (-200 MW) NG    |
| 2031 | DSM - 5 MW                      |
|      | Retire Pete 1 (-227 MW) Coal    |
| 2032 | DSM - 12 MW                     |
|      | Retire HS 7 (-430 MW) NG        |
| 2022 | DSM - 11 MW                     |
| 2033 | Battery 140 MW PV 20 MW         |
| 2024 | Retire Pete 2 (-410 MW) Coal    |
| 2034 | DSM - 5 MW Battery 460 MW       |
| 2025 | DSM - 5 MW CC 200 MW            |
| 2035 | Dallery 240 MW                  |
| 2024 | DSM - 5 MW CC ZUU MW            |
| 2030 | Dattery OU MW                   |

COMPANY

### Initial findings

- The base scenario model results include environmental compliance capital expenditures at Petersburg
- Incremental DSM additions were selected each year starting at ~1% of forecasted sales
- Supply side additions of batteries and solar occur near the unit retirements
- CCGT is selected in later years of study period

### Modeling work will continue

- Review base case including inherent DSM
- Run Capacity Expansion model for the other 4 scenarios
- Run Production Cost model for all scenarios
- Calculate PVRRs
- Calculate metrics
- Share results



# **Questions**?



# **Portfolio Exercise**

Joan Soller, Director of Resource Planning Dr. Marty Rozelle, Facilitator

## Stakeholders draft portfolios

- Consider mix of supply and demand resources to meet ~3000 MW peak load requirement
- Recall representative costs from the April meeting on the next slide
- We are interested in your points of view

### Supply side resource alternatives (from Meeting #1)

| IRP Resource Technology Options*      |                |                           |                                         |  |  |
|---------------------------------------|----------------|---------------------------|-----------------------------------------|--|--|
|                                       | MW<br>Capacity | Performance<br>Attributes | Representative Cost per<br>Installed KW |  |  |
| Simple Cycle Gas Turbine              | 160            | Peaker                    | \$676                                   |  |  |
| Combined Cycle Gas Turbine - H-Class  | 200            | Base                      | \$1,023                                 |  |  |
| Nuclear                               | 200            | Base                      | \$5,530                                 |  |  |
| Wind                                  | 50             | Variable                  | \$2,213                                 |  |  |
| Solar                                 | > 5 MW         | Variable                  | \$2,270                                 |  |  |
| Energy Storage                        | 20             | Flexible                  | ~ \$1,000                               |  |  |
| CHP – industrial site (steam turbine) | 10             | Base                      | Ranges from ~ \$670 to<br>\$1,100       |  |  |
| Other?                                |                |                           |                                         |  |  |

\*See Meeting #1 presentation for sources







## Discussion



# **Next Steps**

#### Dr. Marty Rozelle, Facilitator

## Written comments and feedback

- Deadline to send written comments and questions regarding this meeting to <u>ipl.irp@aes.com</u> is Tuesday, June 21
- All IPL responses will be posted on the IPL IRP website by Tuesday, July 5
- IPL is considering a webinar to share modeling results in August

## Next scheduled meeting

### Friday, September 16, 2016

- Resource Portfolio results
- Sensitivities
- Preferred Resource Plan
- Short Term Action Plan



# Thank you!

We value your input and appreciate your participation. Please submit your feedback form and recycle your nametag at the registration table as you leave the meeting today.