

IPL 2016 IRP Public Advisory Meeting #5

January 13, 2017 WebEx Meeting Only

Welcome & Agenda

Joan Soller, Director of Resource Planning

What Will Be Covered Today

- Review of IRP Development Process
- Final IRP Model Results
- Next Steps
- Stakeholder Questions

Active cases before the Commission

- Cause No. 42170, ECR-28
- Cause No. 38703, FAC-114
- Cause No. 44576, Rates (under appeal)
- Cause No. 44893, Rates
- Cause No. 44794, SO2, NAAQs and CCR
- CN 44885 Consumer Affairs Division Decision Item

Review of IRP Development Process

Megan Ottesen, Regulatory Analyst

- IPL hosted four public advisory meetings before filing the 2016 IRP
 - Introduction to IRP Process:
 - April 11, 2016
 - <u>Scenarios & Metrics Discussion</u>:
 - June 14, 2016
 - <u>Preliminary Results</u>:
 - August 16, 2016
 - Presentation of Final Results: September 16, 2016
- IPL filed the 2016 IRP on November 1, 2016

For meeting materials, see IPL's IRP webpage at: https://www.iplpower.com/irp/

Report Structure

- Section 1: Introduction
- Section 2: Operating and Planning with MISO
- Section 3: Distribution and Smart Grid
- Section 4: Load Research, Forecast and Load Forecasting Methodology
- Section 5: Resource Options
- Section 6: Risks and Environmental Considerations
- Section 7: Resource Portfolio Modeling
- Section 8: Model Results
- Section 9: Conclusions and Recommendations
- Section 10: Attachments

IPL's IRP Objective

- To identify a portfolio to provide:
 - safe
 - reliable
 - reasonable least cost energy service
 - to IPL customers from 2017-2036
 - measured in terms of Present Value Revenue Requirement (PVRR)
 - giving due consideration to potential risks and stakeholder input.

How does IPL select future resources?

- An Integrated Resource Plan is developed based on:
 - Load (demand) forecast
 - for a 20 year period
 - utilizing existing and future supply and demand side resources
 - following an analysis of multiple potential future scenarios.

IPL's resource mix has changed and will continue to change

Energy & Peak Forecast (before DSM impacts)

IRP Resource Adequacy Process

- Given current portfolio of resources
 - Future projected peak and energy needs
 - Plus planning reserve margin (PRM)

IPL Changing Energy Mix Drivers

- Environmental Compliance
 - Air Pollutants
 - Wastewater
- Natural gas prices
- Market prices
- Economic growth rates
- Demand side management
- Wind and Solar declining costs
- Energy storage declining costs

Scenario drivers varied

Scenario Name		Load Forecast	Natural Gas and Market Prices	Clean Power Plan (CPP) and Environment	Distributed Generation (DG)
1	Base Case	Use current load growth methodology	Prices derived from an ABB Mass- based CPP Scenario	CPP starting in 2022, Low cost environmental regulations	Expected moderate decreases in technology costs for wind, storage, and solar
2	Robust Economy High		High	Base Case	Base Case
3	Recession Economy Low		Low	Base Case	Base Case
4	Strengthened Environmental Rules	Base Case	Base Case	20% RPS, high cost CPP and environmental regulations	Base Case
5	Distributed Generation	Base Case	Base Case	Base Case	Fixed additions of 150 MW DG in 2022, 2025, and 2032
6	Quick Transition	Base Case	Base Case	Base Case	Fixed portfolio to retire coal, add max DSM, minimum baseload (NG), plus solar, wind and storage

Supply side resources characteristics

Model inputs include:

- Nameplate capacity
- Capital construction costs
- Fixed Operating and Maintenance (O&M)
- Variable O&M costs
- Operating characteristics
- Typical availability

Supply side resources modeled

- Natural gas
- Nuclear
- Utility-scale solar
- Community solar
- Wind
- Combined Heat and Power (CHP)
- Battery Energy Storage

Demand side resources considered

- IPL completed a DSM Market Potential Study analysis
- Similar EE measures were grouped into defined "DSM bundles"
- IPL used Maximum Achievable Potential (MAP) to create the selectable "DSM Bundles"

	Levelized Utility Cost per MWh				
Sector and Technology	(up to \$30/MWh)	(\$30-60/MWh)	(\$60+/MWh)		
EE Residential HVAC	х	х	x		
EE Residential Lighting	х	N/A	N/A		
EE Residential Other	х	х	х		
EE C&I HVAC	х	х	x		
EE C&I Lighting	х	х	x		
EE C&I Other	х	х	x		
EE C&I Process	х	х	N/A		
	Levelized Utility	Cost per MW/MWI	h without tiers		
EE Residential Behavioral	x				
DR Water Heating DLC	DLC x				
DR Smart Thermostats x					
DR Emerging Tech	X				
DR Curtail Agreements	x				
DR Battery Storage	Х				
DR Air Conditioning Load Mgmt	Х				
*N/A indicates that a bundle was not needed	; all measures fell within low	ver cost bundles.			

Final Model Results

Patrick Maguire, Director of Corporate Planning & Analysis

Candidate Resource Portfolio Results in 2036

Operating Capacity of IPL Resources in 2036 (MW)

Base Case Capacity

Includes Petersburg upgrades for NAAQS, SO₂ and CCR

Capacity factors for Base Case

Metrics are based upon a blend of model results

Deterministic Model

- Change selected variables by a fixed and known amount
- Example:
 - Natural gas prices up 10%
 - Load up 10%
- Output
 - PVRR for each sensitivity
 - Change in emissions

Stochastic Model

- Subject multiple variables to randomness
- Ranges are bound by estimated probability distributions and statistical properties
- Output
 - 50 model iterations for each portfolio
 - Risk profiles
 - Financial metrics

Metrics developed with stakeholder input

Cost	Financial Risk	Stewardship	Resiliency
 Present Value Revenue Requirement (PVRR) Rate Impact 	• Risk Exposure	 Average annual CO₂ emissions Average annual NO_x emissions Average annual SO₂ emissions CO₂ intensity 	 Planning Reserves Distributed Generation penetration Market reliance (energy and capacity)

Scenario Present Value of Revenue Requirements (PVRR) 2017-2036

- Each portfolio was developed to perform best under the assumptions for that scenario
- Since assumptions vary between scenarios, not all portfolios are directly comparable
- This graph shows the PVRR of all portfolios utilizing the base assumptions prior to introducing stochastic uncertainty

Scenarios	0	Cost	Financial Risk	En	vironmenta	l Stewards	hip		Resili	ency	
									Distributed		
								Planning	Generation		Market
		Rate Impact,		Average	Average	Average		Reserves	(Max DG as	Market	Reliance for
		20 yr average		annual CO2	annual NOx	annual SO2	Total CO2	(lowest	percent of	Reliance for	Capacity
	20 yr PVRR	(real		emissions	emissions	emissions	intensity	amount over	capacity	Energy (Max	(Max MW
	(\$ MN)	cents/kWh)	Risk Exposure (\$)	(tons)	(tons)	(tons)	(tons/MWh)	20 yr s	over 20 yr)	over 20 yrs)	over 20 yrs)
Base	\$ 10,309	3.53	\$1,324,989,546	12,883,603	13,181	11,808	0.79	15%	3%	9%	150
Robust E con	\$ 10,550	3.62	\$1,303,754,944	12,883,183	13,181	11,808	0.70	27%	15%	9%	200
Recession Econ	\$ 11,042	3.78	\$1,463,842,563	3,334,067	1,925	593	0.44	3%	3%	58%	0
Streng Enviro	\$ 11,990	4.11	\$1,126,983,327	3,309,326	1,910	629	0.28	15%	10%	52%	50
Adopt of DG	\$ 11,092	3.80	\$1,294,337,690	13,219,942	12,910	10,874	0.78	15%	11%	9%	50
Quick Transition	\$ 11,988	4.20	\$1,311,247,113	5,403,645	4,320	3,243	0.32	15%	35%	57%	0

Key:	
	Best
	Better
	Worce

IPL's Preferred Resource Portfolio is the Base Case

- This reflects the most likely inputs and most probable risks known at this point in time
- The primary selection criteria was the reasonable least cost to customers stated in terms of the Present Value Revenue Requirement (PVRR) metric
- Other metrics including rate and environmental impacts, market reliance and risk exposure were considered but not equally weighted

Hybrid portfolio may evolve

- Technology costs declining more quickly as in 2016
- Higher customer adoption of distributed generation
- Public interest to reduce carbon exposure

2016 Short Term Action Plan (2017-2019)

Resource Changes	2017	Implement DSM proposed for 2017, draft and seek approval for 2018-2020 DSM action plan
	2017	Complete EV CCGT Construction
	2018	Complete CCR/NAAQS-SO2 Pete upgrades
	2017	Upgrade (1) 138 kV line, replace (1) auto- transformer
Transmission	2018	Upgrade 3 substations, (3) 138 kV lines, and replace breakers at 2 substations
	2019	Implement projects identified in 2017 & 2018

IPL's planned improvements to 2019 IRP process

- 1. Analyze smart meter data for more granular load forecasting
- 2. Refine Demand Side Management (DSM) modeling
- 3. Research MISO transmission congestion forecasts
- 4. Assess 138 kV voltage stability options
- 5. Refine frequency & reactive support requirements of new wind assets
- 6. Study firming benefits of batteries with renewables

2016 IPL IRP Schedule Moving Forward		
90 days after filing: February 1, 2017	Interested Party Deadline to Submit Comments to the IURC. See 170 IAC 4-7-2* for details	
120 days after filing: March 1, 2017	IURC Director's Draft Report publication expected	

IAC – Indiana Administrative Code *The draft proposed rule is available at: http://www.in.gov/iurc/2674.htm

Stakeholder Questions

Joan Soller, Director of Resource Planning

Thank you for participating in the WebEx presentation!

Email <u>ipl.irp@aes.com</u> with any other comments or questions.