

Welcome!

The meeting will start momentarily.

Questions during the presentation? Questions can be taken over the audio bridge or submit a question to us in the chat function at any time.

Audio Details

All lines are muted. Following the presentation, unmute your line by selecting your Attendee Name and clicking the microphone icon. If you are dialing from a touch tone, you will press *6 to unmute your line.

Skype Layout

In the upper right corner, you can click the layout icon (1) to select your preferred layout. To maximize your screen size, you can "X" the left-hand windows for "participants" and "conversation." To re-enable this view, click on the participation icon.

IPL 2019 IRP: PUBLIC ADVISORY MEETING #3

May 14, 2019

WELCOME & OPENING REMARKS

Lisa Krueger President, AES US SBU

MEETING OBJECTIVES & AGENDA

Stewart Ramsay *Meeting Facilitator*

AGENDA

Торіс	Time (Eastern)	Presenter
Registration	9:00 – 9:30	-
Welcome & Opening Remarks	9:30 – 9:35	Lisa Krueger, President AES US SBU
Meeting Objectives & Agenda	9:35 – 9:40	Stewart Ramsay, Meeting Facilitator
Meeting 2 Recap	9:40 – 9:50	Patrick Maguire, Director of Resource Planning
Stakeholder Presentation: Indiana Chapter of the National Association for the Advancement of Colored People (NAACP)	9:50 – 10:05	Denise Abdul-Rahman, NAACP
Stakeholder Presentation: Advanced Energy Management Alliance (AEMA)	10:05 – 10:20	Ingrid Bjorklund, AEMA Consultant
Electric Vehicle (EV) & Distributed Solar Forecast	10:20 – 11:10	Ed Schmidt, MCR
BREAK	11:10 – 11:25	
Load Forecast – High & Low Presentation Recap Customer Class Breakout	11:25 – 11:40	Erik Miller, Senior Research Analyst
DSM Bundles for IRP Modeling	11:40 – 12:00	Erik Miller, Senior Research Analyst
LUNCH	12:00 – 12:45	
Modeling and Scenario Recap	12:45 – 1:45	Patrick Maguire, Director of Resource Planning
Final Q&A, Concluding Remarks & Next Steps	1:45 – 2:00	Stewart Ramsay, Meeting Facilitator

5

MEETING 2 RECAP

Patrick Maguire *Director of Resource Planning*

INTEGRATED RESOURCE PLAN (IRP):

IPL's plan to provide safe, reliable, and sustainable energy solutions for the communities we serve

- IRP submitted every three years
- Plan created with stakeholder input
- 20-year look at how IPL will serve load
- Modeling and analysis culminates in a preferred resource portfolio

What is a preferred resource portfolio?

" 'Preferred resource portfolio' means the utility's selected long term supply-side and demand-side resource mix that safely, reliably, efficiently, and cost-effectively meets the electric system demand, taking cost, risk, and uncertainty into consideration."

IURC RM #15-06, LSA Document #18-127 Link (PDF): <u>https://www.in.gov/iurc/files/RM_ord_20181024141710007.pdf</u>

2019 IRP STAKEHOLDER PROCESS

Dates to follow for Meeting #4 & Meeting #5

 2016 IRP Recap 2019 IRP Timeline, Objectives, Stakeholder Process Commodity Assumptions Capacity Discussion IPL Existing Resources and Preliminary Load Forecast Scenario Workshop Introduction to MPS Update and Plan Stakeholder Presentations Stakeholder Presentations Stakeholder Presentations Stakeholder Presentations Stakeholder Presentations Summary of Stakeholder Presentations Summary of Stakeholder Feedback Present Final Scenarios Modeling Update Assumptions Review and Updates Preliminary Look at Preliminary Look at 	January 29 th	March 13 th	May 14 th	August	October
Ascend Analytics Supply-Side Resource Types DSM/Load Forecast Schedule	2016 IRP Recap 2019 IRP Timeline, Objectives, Stakeholder Process Capacity Discussion IPL Existing Resources and Preliminary Load Forecast Introduction to Ascend Analytics Supply-Side Resource Types DSM/Load Forecast Schedule	 Stakeholder Presentations Commodity Assumptions Capital Cost Assumptions IPL-Proposed Scenario Framework Scenario Workshop MPS Update and Plan 	 Stakeholder Presentations Summary of Stakeholder Feedback Present Final Scenarios Modeling Update Assumptions Review and Updates 	 Stakeholder Presentations Summary of Stakeholder Feedback Preliminary Model Results Scenario Descriptions and Results Preliminary Look at Risk Analysis and Stochastics 	 Stakeholder Presentations Final Model Results Scenario Updates Updates on Stakeholder Scenarios Preferred Plan

IPL is committed to conducting a robust and collaborative stakeholder process. Multiple communication avenues will be provided to ensure that all stakeholders have the opportunity to be a part of the 2019 IRP process.

STAKEHOLDER PRESENTATION

Denise Abdul-Rahman

STAKEHOLDER PRESENTATION

Ingrid Bjorklund Advanced Energy Management Alliance (AEMA)

ELECTRIC VEHICLE (EV) & DISTRIBUTED SOLAR FORECAST

Ed Schmidt

MCR Performance Solutions

Electric Vehicle and Distributed Solar Forecasts: 2020-2040

5/14/19

MCR Performance Solutions: Management Consulting to the Utility Industry

Regulatory Services

Strategic Analysis Rate Design & Cost Analysis Regulatory Filings Process Improvement

Utility Transformation

New Technology Strategy & Product Development: Electric Vehicles and C&I Customer Onsite Product Development Enhanced Customer Experience: Strategies, Roadmaps and Product Financing Strategy

Transmission Strategy

Formula Rate and Cost Analysis FERC Filings Strategic Analysis

Energy Efficiency

Strategy and Program Design Process and Data Management Program Implementation Program Management & Administration Program Tracking & Reporting

Financial Advisory

Financial Forecasting Enterprise Risk Management Strategic Planning Capital Allocation Financial Processes & Systems

Asset Management

Zero-Base Budgeting Capital Project Evaluation Life Cycle Management Planning Long Range Planning Management Reporting Capitalization Policies and Procedures

Table of Acronyms

BNEF	Bloomberg New Energy Finance	GTM	GreenTech Media	
BRT	IndyGo bus rapid transit routes	ICE	Internal combustion engine	
BYD	IndyGo-selected bus manufacturer	IHS	IHS Markit Company	
CAGR	Compound annual growth rate	IU	Indiana University	
C&I	Commercial and industrial	LDEV	Light duty electric vehicle	
EEI	Edison Electric Institute	NEM	Net metered	
EIA	US Energy Information	PV	Photovoltaic, or distributed, solar	
	Administration	PVWatts	US National Renewable Energy	
EV	Electric vehicle		Laboratory PV calculation tool	

Agenda

- EV Forecast
 - 2018 baseline data
 - Methodology
 - Input data
 - Forecast
- Distributed solar (PV) Forecast
 - 2018 baseline data
 - Methodology
 - Input data
 - Forecast
- Summary: EV and Distributed Solar Forecast

EV Forecast

Attribute	Value	Source
Count	515	IPL-provided IHS/Polk
kWh/100 miles	31	www.fueleconomy.gov
Annual miles	11,655	www.carinsurance.com
Annual kWh	3,613	= 31 * (11,655/100)

Notes: 1. 31 kWh/100 miles takes the weighted average for Bolt, Leaf, Tesla S, Tesla 3, Tesla X 2. Annual kWh = 11,655 miles / 100 * 31

Historical Light Duty EV Fleet Growth

TPL.

MCR Performance Solutions, LLC

EV Charging Curve – IPL Electric Vehicle Rates

Actual kWh Curve for EV Charging, 2018

IndyGO Electric Buses

Attribute	60' BYD BRT	40' Fleet
Current quantity	2	21
2032 quantity	56	144
Range	275	250
Miles/year	45,600	45,600
Charger	40 kW x 2	40 kW x 2
Battery kWh	652	489
Charge time hours	6	4.5

- Notes: 1. 2032 quantities are per IndyGO capital plan
 - 2. Ranges are current per manufacturers
 - 3. BYD charger, battery kWh and charge time are per BYD, fleet buses are estimated

LDEV Unit Forecasting Methodology

LDEV Unit Forecast

Year	Total Fleet	EV Fleet	ICE Fleet	EV % Fleet
2020	833,269	5,573	827,696	0.7%
2025	850,552	19,419	831,133	2.3%
2030	865,691	55,964	809,727	6.5%
2035	879,523	127,928	751,595	14.6%
2040	893,781	196,977	696,804	22.0%

Marion County EV Percent of Fleet by Year

EV MWh Forecasting Methodology

- 3,613 kWh/year used, as discussed above
- Rate EVX pricing periods used
- 2.5% of charging occurs in the Summer peak period
- Annual energy usage based on vehicle specs and operations
- Annual energy and impacts driven by fleet size and unit kWh

Electric Vehicle MWh Impacts through 2040

Marion County EV MWh by Year

Distributed Solar Forecast

2018 Residential and Commercial Distributed Solar Baseline

Attribute	Residential	C&I
IPL NEM count (Adjusted EIA counts from IPL 2018 NEM file)	177	21
Size (kW - DC)	8	125
Panel type	Anti-reflective crystalline silicon	Anti-reflective crystalline silicon
Array type	Fixed	Fixed
Capacity factor (AC)	15.8%	15.8%
Production basis	PVWatts – 46241	PVWatts – 46241

Notes: 1. Panel type is PVWatts "premium"

2. Zip code 46241 shows relatively high solar penetration

Historical Distributed Solar System Growth

Distributed Solar Production Curve

Distributed Solar Unit Forecasting Methodology

IPL 2018 NEM Baseline	GTM 4Q18 Solar Outlook	2019-23 GTM- based CAGR	Apply CAGR to IPL NEM Baseline
 Cleaned input 2018 IPL NEM census dataset Retained all NEM records showing non-null system size and installation date 	 Compiled annual installed MWdc national actual and forecasts for 2013-2023 separately for residential and non-residential customers Examined impact of high-volume states, relative intensity of activity in Indiana, etc. 	 Computed 2019- 2023 compound annual growth rates for residential and non-residential MVVdc installed nationally 	 Applied compound annual growth rates to 2018 IPL actual number of systems for 2019 and 2020-2040 Applied baseline IPL system size in kW-DC and annual kWh-AC separated into Rate CGS peak/off-peak splits

Input Data: GTM-based CAGR

Year	Incremental Residential MWdc	Incremental Residential Growth Rate	Incremental C&I MWdc	Incremental C&I Growth Rate
2019	2,510	10.62%	1,761	-16.70%
2020	2,827	12.63%	1,853	5.22%
2021	3,302	16.80%	1,965	6.04%
2022	3,424	3.69%	1,944	-1.07%
2023	3,775	10.25%	2,144	10.29%
CAGR		10.74%		5.04%

Distributed Solar kW and MWh Forecasting Methodology

Distributed Solar MWh Impacts through 2040

Marion County PV MWh by Year

Summary: EV and Distributed Solar Forecast

EV and Distributed Solar Forecast Summary: MWh

Year	EV Summer Peak MWh	EV Summer Mid- Peak MWh	EV Summer Off-Peak MWh	EV Non- Summer Peak MWh	EV Non- Summer Off-Peak MWh	EV Annual MWh	PV Peak MWh	PV Off-Peak MWh	PV Annual MWh
2020	500	1,076	6,273	3,610	13,506	24,965	4,388	1,619	6,007
2021	697	1,500	9,129	5,031	19,595	35,952	4,701	1,734	6,435
2022	887	1,908	11,277	6,399	24,255	44,726	5,035	1,858	6,893
2023	1,063	2,287	13,296	7,668	28,631	52,944	5,399	1,992	7,391
2024	1,378	2,966	16,620	9,947	35,883	66,795	5,783	2,134	7,917
2025	1,743	3,751	20,399	12,578	44,140	82,611	6,197	2,286	8,483
2026	2,175	4,680	24,803	15,693	53,776	101,126	6,632	2,447	9,079
2027	2,730	5,875	30,362	19,702	65,961	124,630	7,114	2,626	9,740
2028	3,374	7,259	36,738	24,343	79,945	151,657	7,754	2,861	10,615
2029	4,138	8,903	44,241	29,856	96,417	183,555	8,432	3,111	11,543
2030	5,023	10,809	52,878	36,248	115,389	220,348	9,170	3,383	12,553

EV and Distributed Solar Forecast Summary: MWh (continued)

Year	EV Summer Peak MWh	EV Summer Mid- Peak MWh	EV Summer Off-Peak MWh	EV Non- Summer Peak MWh	EV Non- Summer Off-Peak MWh	EV Annual MWh	PV Peak MWh	PV Off-Peak MWh	PV Annual MWh
2031	6,117	13,163	63,456	44,142	138,644	265,523	9,948	3,670	13,618
2032	7,358	15,833	75,151	53,094	164,413	315,848	10,777	3,976	14,753
2033	8,706	18,734	87,718	62,822	192,132	370,112	11,677	4,308	15,985
2034	10,095	21,723	100,667	72,845	220,694	426,023	12,648	4,666	17,314
2035	11,483	24,709	113,604	82,859	249,229	481,884	13,689	5,050	18,739
2036	12,843	27,636	126,285	92,675	277,200	536,639	14,811	5,464	20,275
2037	14,156	30,462	138,525	102,150	304,200	589,493	16,034	5,916	21,950
2038	15,414	33,168	150,251	111,227	330,063	640,122	17,490	6,453	23,943
2039	16,615	35,751	161,440	119,888	354,744	688,439	19,057	7,031	26,088
2040	17,681	38,045	171,380	127,583	376,669	731,358	20,756	7,658	28,414

EV and Distributed Solar as a Percent of 2017 Sales

Year

■EV ■PV ■Net

BREAK

LOAD FORECAST – HIGH & LOW RECAP OF CUSTOMER CLASS BREAKOUT Erik Miller Senior Research Analyst

Electric Vehicle and Distributed Solar Annual kWh for IPL Service Territory

IPL LOAD FORECAST EV & PV ADJUSTMENT

IPL Load Forecast - EV and PV Adjustments

IPL BASE, HIGH & LOW LOAD FORECAST

INCLUDES PRIOR YEAR DSM IMPACTS; FUTURE DSM WILL BE MODELED IN THE IRP

IPL Base, High & Low Load Forecast

CLASS SALES FORECAST

INCLUDES PRIOR YEAR DSM IMPACTS; FUTURE DSM WILL BE MODELED IN THE IRP

CLASS SALES FORECAST

INCLUDES PRIOR YEAR DSM IMPACTS; FUTURE DSM WILL BE MODELED IN THE IRP; INCLUDES EV & PV

No Losses Included

DSM BUNDLES IN IRP MODELING

Erik Miller Senior Research Analyst

DSM PROCESS & THE IRP

an AES company

IRP DSM BUNDLING APPROACH

- DSM Bundles are 0.25% "decrements" of annual load excluding Opt Out customers
- Bundles are created from the Market Potential Study's Realistic Achievable Potential
- Each "decrement" bundle has an associated loadshape and cost/MWh that serves as inputs into the IRP model
- GDS uses loadshapes specific to measure-types to create 8760s for the IRP model
- Residential and C&I are combined in bundles
- Ten bundles will be included as selectable resources in the IRP model
 - 8 Energy Efficiency Bundles
 - 2 Demand Response Bundles

MPS - Realistic Achievable Potential Supply Curve

Data from IRP/MPS Planning Year: 2026

DSM DECREMENT BUNDLES -PERCENT OF OPT OUT SALES

DSM DECREMENT BUNDLES -CUMULATIVE IMPACTS

DSM NEXT STEPS

Next Steps:

- Evaluate DSM in the IRP Model in May and June
- Present results at Public Advisory Meeting #4

LUNCH BREAK

MODELING AND SCENARIO RECAP

Patrick Maguire *Director of Resource Planning*

RECAP: SCENARIO DRIVERS

	Reference Case	Scenario A: Carbon Tax	Scenario B: Carbon Tax + High Gas	Scenario C: Carbon Tax + Low Gas	Scenario D: No Carbon Tax + High Gas
Natural Gas Prices	Base	Base	HIGH 🛧	LOW 🗸	HIGH 🛧
Carbon Tax	No Carbon Price	Carbon Price (2028+)	Carbon Price (2028+)	Carbon Price (2028+)	No Carbon Price
Coal Prices	Base	Base	Base	Base	Base
IPL Load	Base	Base	Base	LOW 🗸	HIGH 🛧
Capital Costs for Wind, Solar, and Storage	Base	Base	Base	Base	Base

FUNDAMENTAL FORECAST VENDOR

Custom sensitivities completed for IPL provided to NDA stakeholders

- Wood Mackenzie H1 2018 Long Term Outlook
- Provided Cases:
 - 1. Federal Carbon Case (Carbon tax starting 2028)
 - 2. Federal Carbon Case + High Gas Sensitivity
 - 3. No Carbon Case
 - 4. No Carbon + Low Gas Sensitivity
 - 5. No Carbon Case + High Gas Sensitivity
 - 6. Federal Carbon Case + Low Gas Sensitivity

RECAP: FORWARD CURVES

	Deterministic Modeling	Stochastic Ranges	Notes
Power	✓	\checkmark	On/Off peak monthly power prices from Wood Mackenzie. Hourly shapes created in PowerSimm.
Natural Gas	\checkmark	\checkmark	Wood Mackenzie monthly gas prices with delivery adders. Daily price shapes created in PowerSimm.
Coal	\checkmark	\checkmark	Internally sourced IPL coal curves.
Fuel Oil	\checkmark	\checkmark	Wood Mackenzie
Emissions	~	×	NOx and SO2 curves will be sourced from forward curves. Carbon prices from Wood Mackenzie.
Capacity	✓	\checkmark	Capacity will be valued at the estimated bilateral price for MISO Zone 6.

POWER AND NATURAL GAS: BLENDED CURVES FOR YEARS 1-3

- Forward curves utilized through 2023
- Blended into fundamental curves starting in 2021 for Base Case, 2020 for High and Low Gas Sensitivities

COAL PRICE MODELING

- IPL Coal Curve based on RFP prices and market intelligence on southern Indiana inland coal market
- Stochastic volatility applied only to open/unhedged portion

IPL Coal Price Volatility Tied to Contracted Percentage

57

SCENARIO FRAMEWORK

	Reference Case	Scenario A	Scenario B	Scenario C	Scenario D
No Accelerated Retirements	Portfolio 1	1a	1b	1c	1d
Pete Unit 1 Retire <mark>2021</mark> Pete Units 2-4 Operational	Portfolio 2	2a	2b	2c	2d
Pete 1 Retire <mark>2021</mark> ; Pete 2 Retire <mark>2023</mark> Pete Units 3-4 Operational	Portfolio 3	За	3b	3с	3d
Pete 1 Retire <u>2021</u> ; Pete 2 Retire <u>2023</u> ; Pete 3 Retire <u>2026</u> ; Pete Unit 4 Operational	Portfolio 4	4a	4b	4c	4d
Pete 1 Retire <u>2021</u> ; Pete 2 Retire <u>2023</u> ; Pete 3 Retire <u>2026</u> ; Pete 4 Retire <u>2030</u>	Portfolio 5	5a	5b	5c	5d

Wide range of scenarios and portfolios will inform resource decisions. Modeling underway and will be ongoing over the next two months.

IRP MODELING: PUTTING THE PIECES TOGETHER

DATA RELEASE SCHEDULE

IPL 2019 IRP Assumptions: Data Release Schedule

Dataset	Data Available
Commodity Price Forecasts [Complete]	Friday, April 12, 2019
MISO Solar Capacity Credit Calculation [Complete]	Friday, April 12, 2019
Capital Cost Assumptions for New Resources [Complete]	Friday, April 12, 2019
Updated Commodity Price Forecasts	Tuesday, May 14, 2019
IPL Load Forecast: Energy, Peak, Reserve Margin Target	Tuesday, May 14, 2019
Operating Characteristics for New Resources	Tuesday, June 11, 2019
Modeling Constraints for New Resources	Tuesday, June 11, 2019
Cost and Operating Characteristics for Existing IPL Resources	Tuesday, June 11, 2019
Stochastic Parameters and Distributions	Tuesday, June 11, 2019

Q&A, CONCLUDING REMARKS & NEXT STEPS

Stewart Ramsay *Meeting Facilitator* Patrick Maguire Director of Resource Planning

NEXT STEPS

- Next Meeting: TBD
- Meeting #4 Material:
 - Scenario Descriptions and Results
 - > Preliminary Model Results
 - > Risk Analysis and Stochastics

Email questions, comments, or other feedback to ipl.irp@aes.com