SCS ENGINEERS

CCR Surface Impoundment Hydrologic and Hydraulic Capacity Evaluation

Indianapolis Power & Light Company

Harding Street Generating Station

Prepared for:

Indianapolis Power & Light Company

Harding Street Station 3700 South Harding Street Indianapolis, Indiana 46221

Prepared by:

SCS ENGINEERS

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> October 13, 2016 File No. 25216140

Offices Nationwide www.scsengineers.com CCR Surface Impoundment Hydrologic and Hydraulic Capacity Evaluation Indianapolis Power & Light Company Harding Street Generating Station Indianapolis, Indiana

Prepared for:

Indianapolis Power & Light Company Harding Street Station 3700 South Harding Street Indianapolis, Indiana 46151

Prepared by:

SCS ENGINEERS

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> October 13, 2016 File No. 25216140

Table of Contents

Section

1.0	Introduction	1
2.0	Hydrologic and Hydraulic Analysis	1
3.0	Qualified Professional Engineer Certification	3

List of Figures

- 1 Site Location Map
- 2 CCR Surface Impoundment Hydraulic Structures and Information Map

Appendices

- A Federal Register 40 CFR 287.52
- B Precipitation Estimate
- C HydroCAD Model Analysis

I:\25216140.00\Deliverables\Harding St H&H Evaluation\Harding Street H&H Evaluation Final 161009.docx

i

Page

[This page left blank intentionally]

1.0 INTRODUCTION

SCS Engineers (SCS) performed hydrologic and hydraulic capacity evaluations of the CCR (coal combustion residuals) surface impoundments at the Indianapolis Power & Light Company (IPL) Harding Street Generating Station (HS) in Indianapolis, Indiana. These analyses were performed in accordance with the Federal Register CFR 257.82, "Hydraulic and hydraulic capacity requirements for CCR surface impoundments". **Figure 1** shows the location of the HS. CFR 257.82 is included in **Appendix A**. The layout of the CCR surface impoundments at the HS is shown in **Figure 2**.

There are three CCR surface impoundments at the HS, Ponds 1, 2A/2B, and 3. Pond 1 is full of CCR up to the bottom of the outlet. A berm between Ponds 2A and 2B has been removed to create one pond, Pond 2A/2B. The HS generating station has been converted to a gas powered generating station and no CCR is currently discharged to the CCR surface impoundments. Pumps located in basement sumps within the generating station, pump water to Pond 1, when needed.

IP&L is in the process of developing plans to permanently close the CCR surface impoundments.

2.0 HYDROLOGIC AND HYDRAULIC ANALYSIS

A hydraulic analysis was performed in accordance with the "General Guidelines for New Dams and Improvements to Existing Dams in Indiana", published by the Indiana Department of Natural Resources, Division of Water, January 1, 2001. The hydraulic analysis was performed using HydroCAD storm water modeling software.

According to the General Guidelines, if the time of concentration (Tc) is less than 6 hours, the 6-hour probable maximum precipitation (PMP) should be used to analyze the spillway system. The ponds at the HS are contained within the containment berms, and the Tc for each pond is less than 6 hours. A Type B design storm was used in the HydroCAD model.

The hydraulic analysis evaluates the hydraulic capacity of the CCR impoundment outlet and ensures that the outlet is capable of safely passing the runoff from the design storm event without embankment overtopping and failing. The design storm event is determined by the hazardous classification of the impoundment.

According to IPL personnel, Pond 2A/2B is in the Low Significant Hazard classification and Ponds 1 and 3 are in the Significant Hazard Classification. According to CFR 257.82(3 (ii)), for a low hazard potential CCR impoundment, the inflow design flood is the 100-year storm event and for a significant hazard potential CCR surface impoundment, the inflow design flood is the 1,000-year storm event.

Because CCR surface impoundments Ponds 2 and 4 are out of service, they will not be evaluated in this analysis. Runoff from Ponds 2 drains to Pond 2A/2B and runoff from Pond 4 drains to Pond 3, therefore, Ponds 2 and 4 are included in the evaluation of Pond 2A/2B and Pond 3.

1

According to the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 Precipitation Frequency Estimate (**Appendix B**), for the Indianapolis Indiana area, the 6-hour, 100-year storm event is 4.83 inches of precipitation, the 6-hour, 1,000-year storm event is 7.04 inches of precipitation.

Results

The input parameters and output of the HydroCAD model are included in **Appendix C**. The results of the hydraulic analysis are summarized below:

<u>100 – year S</u>	Storm Event		
Pond	Berm Elevation	Maximum Water Height	Freeboard (ft)
2A/2B	685	682.45	2.55
<u>1,000 – yea</u>	r Storm Event		
Pond	Berm Elevation	Maximum Water Height	Freeboard (ft)
1	685	683.52	1.48
3	684	680.29	3.71

Ponds 2A/2B, 1, and 3 can safely pass the storm event and maintain a minimum of 1.0 foot of freeboard between the water surface and the top of the berm.

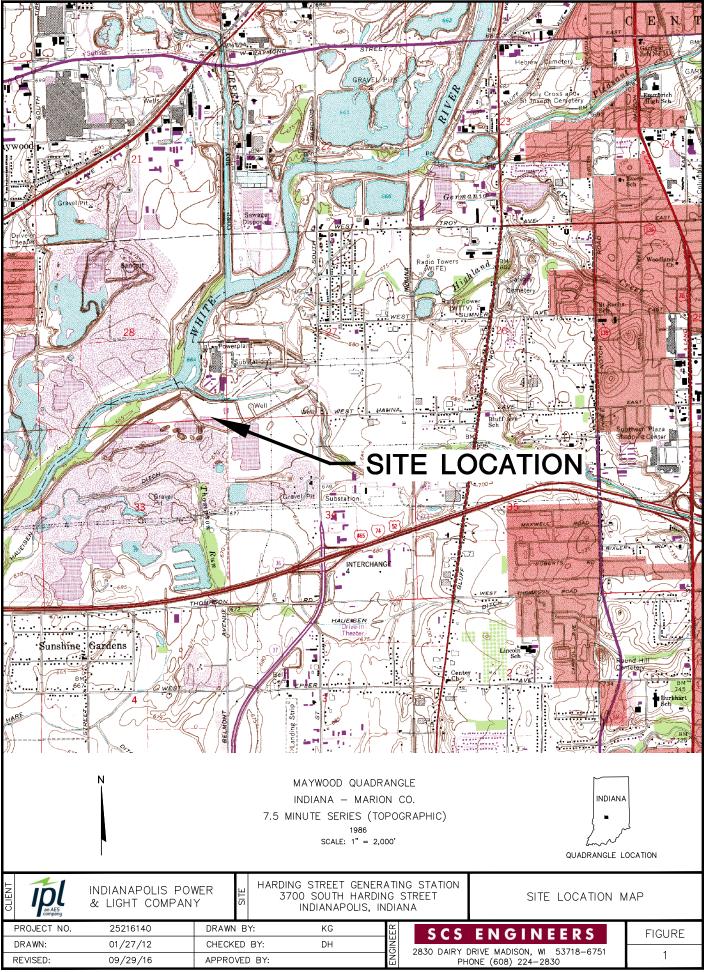
2

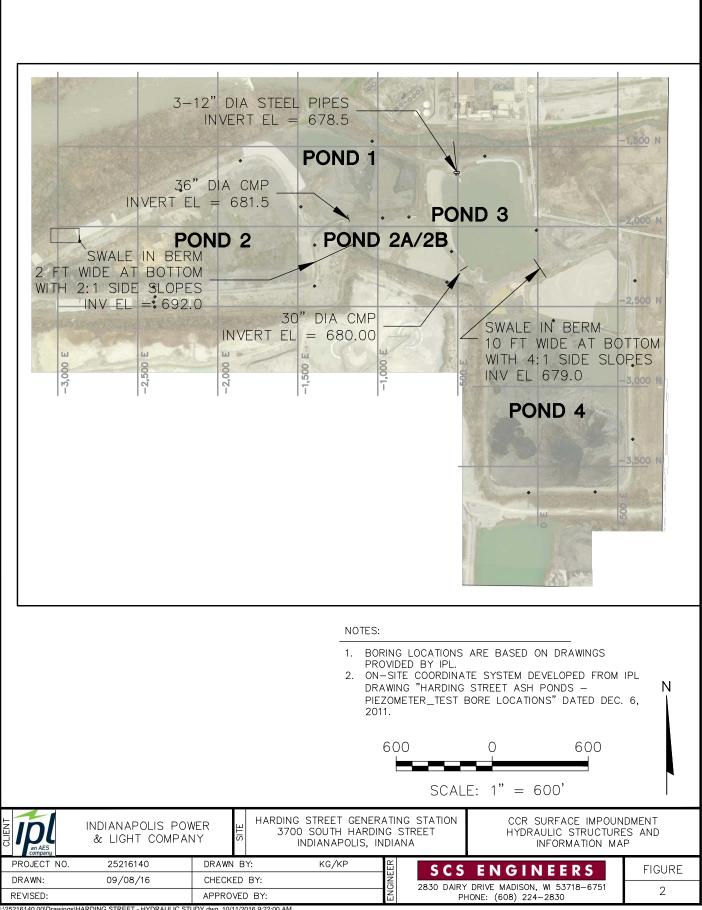
QUALIFIED PROFESSIONAL ENGINEER 3.0 CERTIFICATION

PROFESSIONAL ENGINEER CERTIFICATION

"I, David Hendron, hereby certify that I am a licensed professional engineer in the State of Indiana in accordance with the requirements of Indiana Administrative Code Title 864; and that, to the best of my knowledge, all information contained in this document is correct."

Signature 1


Title and PE Number, Sencer Engineer PE 18000050 Date 13 Octohn 2016


[This page left blank intentionally]

FIGURES

- 1 Site Location Map
- 2 CCR Surface Impoundment Hydraulic Structures and Information Map

I:\25216140.00\Drawings\HARDING STREET SITE LOCATION.dwg, 9/30/2016 9:20:42 AM

:\25216140.00\Drawings\HARDING STREET - HYDRAULIC STUDY.dwg, 10/11/2016 9:22:00 AN

APPENDIX A

Federal Register 40 CFR 257.82

follow to periodically assess the effectiveness of the control plan.

(5) The owner or operator of a CCR unit must prepare an initial CCR fugitive dust control plan for the facility no later than October 19, 2015, or by initial receipt of CCR in any CCR unit at the facility if the owner or operator becomes subject to this subpart after October 19, 2015. The owner or operator has completed the initial CCR fugitive dust control plan when the plan has been placed in the facility's operating record as required by § 257.105(g)(1).

(6) Amendment of the plan. The owner or operator of a CCR unit subject to the requirements of this section may amend the written CCR fugitive dust control plan at any time provided the revised plan is placed in the facility's operating record as required by § 257.105(g)(1). The owner or operator must amend the written plan whenever there is a change in conditions that would substantially affect the written plan in effect, such as the construction and operation of a new CCR unit.

(7) The owner or operator must obtain a certification from a qualified professional engineer that the initial CCR fugitive dust control plan, or any subsequent amendment of it, meets the requirements of this section.

(c) Annual CCR fugitive dust control report. The owner or operator of a CCR unit must prepare an annual CCR fugitive dust control report that includes a description of the actions taken by the owner or operator to control CCR fugitive dust, a record of all citizen complaints, and a summary of any corrective measures taken. The initial annual report must be completed no later than 14 months after placing the initial CCR fugitive dust control plan in the facility's operating record. The deadline for completing a subsequent report is one year after the date of completing the previous report. For purposes of this paragraph (c), the owner or operator has completed the annual CCR fugitive dust control report when the plan has been placed in the facility's operating record as required by § 257.105(g)(2).

(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in § 257.105(g), the notification requirements specified in § 257.106(g), and the internet requirements specified in § 257.107(g).

§257.81 Run-on and run-off controls for CCR landfills.

(a) The owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill must design, construct, operate, and maintain:

(1) A run-on control system to prevent flow onto the active portion of the CCR unit during the peak discharge from a 24-hour, 25-year storm; and

(2) A run-off control system from the active portion of the CCR unit to collect and control at least the water volume resulting from a 24-hour, 25-year storm.

(b) Run-off from the active portion of the CCR unit must be handled in accordance with the surface water requirements under § 257.3–3.

(c) Run-on and run-off control system plan—(1) Content of the plan. The owner or operator must prepare initial and periodic run-on and run-off control system plans for the CCR unit according to the timeframes specified in paragraphs (c)(3) and (4) of this section. These plans must document how the run-on and run-off control systems have been designed and constructed to meet the applicable requirements of this section. Each plan must be supported by appropriate engineering calculations. The owner or operator has completed the initial run-on and run-off control system plan when the plan has been placed in the facility's operating record as required by § 257.105(g)(3).

(2) Amendment of the plan. The owner or operator may amend the written run-on and run-off control system plan at any time provided the revised plan is placed in the facility's operating record as required by § 257.105(g)(3). The owner or operator must amend the written run-on and runoff control system plan whenever there is a change in conditions that would substantially affect the written plan in effect.

(3) Timeframes for preparing the initial plan—(i) Existing CCR landfills. The owner or operator of the CCR unit must prepare the initial run-on and runoff control system plan no later than October 17, 2016.

(ii) New CCR landfills and any lateral expansion of a CCR landfill. The owner or operator must prepare the initial runon and run-off control system plan no later than the date of initial receipt of CCR in the CCR unit.

(4) Frequency for revising the plan. The owner or operator of the CCR unit must prepare periodic run-on and runoff control system plans required by paragraph (c)(1) of this section every five years. The date of completing the initial plan is the basis for establishing the deadline to complete the first subsequent plan. The owner or operator may complete any required plan prior to the required deadline provided the owner or operator places the completed plan into the facility's operating record within a reasonable amount of time. In all cases, the deadline for completing a subsequent plan is based on the date of completing the previous plan. For purposes of this paragraph (c)(4), the owner or operator has completed a periodic run-on and run-off control system plan when the plan has been placed in the facility's operating record as required by § 257.105(g)(3).

(5) The owner or operator must obtain a certification from a qualified professional engineer stating that the initial and periodic run-on and run-off control system plans meet the requirements of this section.

(d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in § 257.105(g), the notification requirements specified in § 257.106(g), and the internet requirements specified in § 257.107(g).

§ 257.82 Hydrologic and hydraulic capacity requirements for CCR surface impoundments.

(a) The owner or operator of an existing or new CCR surface impoundment or any lateral expansion of a CCR surface impoundment must design, construct, operate, and maintain an inflow design flood control system as specified in paragraphs (a)(1) and (2) of this section.

(1) The inflow design flood control system must adequately manage flow into the CCR unit during and following the peak discharge of the inflow design flood specified in paragraph (a)(3) of this section.

(2) The inflow design flood control system must adequately manage flow from the CCR unit to collect and control the peak discharge resulting from the inflow design flood specified in paragraph (a)(3) of this section.

(3) The inflow design flood is:
(i) For a high hazard potential CCR surface impoundment, as determined under § 257.73(a)(2) or § 257.74(a)(2), the probable maximum flood;

(ii) For a significant hazard potential CCR surface impoundment, as determined under § 257.73(a)(2) or § 257.74(a)(2), the 1,000-year flood;

(iii) For a low hazard potential CCR surface impoundment, as determined under § 257.73(a)(2) or § 257.74(a)(2), the 100-year flood; or

(iv) For an incised CCR surface impoundment, the 25-year flood.

(b) Discharge from the CCR unit must be handled in accordance with the surface water requirements under § 257.3–3.

(c) Inflow design flood control system plan—(1) Content of the plan. The owner or operator must prepare initial

21480

and periodic inflow design flood control system plans for the CCR unit according to the timeframes specified in paragraphs (c)(3) and (4) of this section. These plans must document how the inflow design flood control system has been designed and constructed to meet the requirements of this section. Each plan must be supported by appropriate engineering calculations. The owner or operator of the CCR unit has completed the inflow design flood control system plan when the plan has been placed in the facility's operating record as required by § 257.105(g)(4).

(2) Amendment of the plan. The owner or operator of the CCR unit may amend the written inflow design flood control system plan at any time provided the revised plan is placed in the facility's operating record as required by § 257.105(g)(4). The owner or operator must amend the written inflow design flood control system plan whenever there is a change in conditions that would substantially affect the written plan in effect.

(3) Timeframes for preparing the initial plan—(i) Existing CCR surface impoundments. The owner or operator of the CCR unit must prepare the initial inflow design flood control system plan no later than October 17, 2016.

(ii) New CCR surface impoundments and any lateral expansion of a CCR surface impoundment. The owner or operator must prepare the initial inflow design flood control system plan no later than the date of initial receipt of CCR in the CCR unit.

(4) Frequency for revising the plan. The owner or operator must prepare periodic inflow design flood control system plans required by paragraph (c)(1) of this section every five years. The date of completing the initial plan is the basis for establishing the deadline to complete the first periodic plan. The owner or operator may complete any required plan prior to the required deadline provided the owner or operator places the completed plan into the facility's operating record within a reasonable amount of time. In all cases, the deadline for completing a subsequent plan is based on the date of completing the previous plan. For purposes of this paragraph (c)(4), the owner or operator has completed an inflow design flood control system plan when the plan has been placed in the facility's operating record as required by § 257.105(g)(4).

(5) The owner or operator must obtain a certification from a qualified professional engineer stating that the initial and periodic inflow design flood control system plans meet the requirements of this section. (d) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in § 257.105(g), the notification requirements specified in § 257.106(g), and the internet requirements specified in § 257.107(g).

§ 257.83 Inspection requirements for CCR surface impoundments.

(a) *Inspections by a qualified person.* (1) All CCR surface impoundments and any lateral expansion of a CCR surface impoundment must be examined by a qualified person as follows:

(i) At intervals not exceeding seven days, inspect for any appearances of actual or potential structural weakness and other conditions which are disrupting or have the potential to disrupt the operation or safety of the CCR unit;

(ii) At intervals not exceeding seven days, inspect the discharge of all outlets of hydraulic structures which pass underneath the base of the surface impoundment or through the dike of the CCR unit for abnormal discoloration, flow or discharge of debris or sediment; and

(iii) At intervals not exceeding 30 days, monitor all CCR unit instrumentation.

(iv) The results of the inspection by a qualified person must be recorded in the facility's operating record as required by § 257.105(g)(5).

(2) Timeframes for inspections by a qualified person—(i) Existing CCR surface impoundments. The owner or operator of the CCR unit must initiate the inspections required under paragraph (a) of this section no later than October 19, 2015.

(ii) New CCR surface impoundments and any lateral expansion of a CCR surface impoundment. The owner or operator of the CCR unit must initiate the inspections required under paragraph (a) of this section upon initial receipt of CCR by the CCR unit.

(b) Annual inspections by a qualified professional engineer. (1) If the existing or new CCR surface impoundment or any lateral expansion of the CCR surface impoundment is subject to the periodic structural stability assessment requirements under § 257.73(d) or § 257.74(d), the CCR unit must additionally be inspected on a periodic basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection must, at a minimum, include:

(i) A review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record (*e.g.*, CCR unit design and construction information required by §§ 257.73(c)(1) and 257.74(c)(1), previous periodic structural stability assessments required under §§ 257.73(d) and 257.74(d), the results of inspections by a qualified person, and results of previous annual inspections);

(ii) A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit and appurtenant structures; and

(iii) A visual inspection of any hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit for structural integrity and continued safe and reliable operation.

(2) *Inspection report.* The qualified professional engineer must prepare a report following each inspection that addresses the following:

(i) Any changes in geometry of the impounding structure since the previous annual inspection;

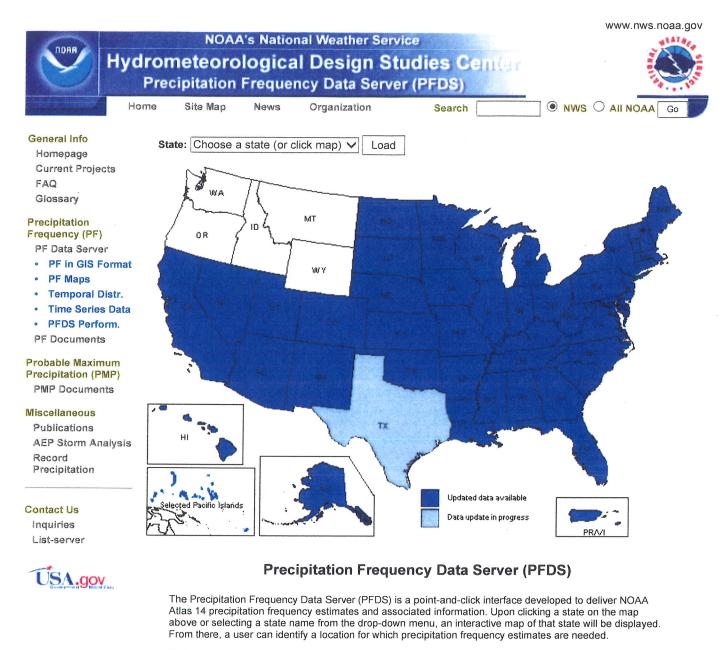
(ii) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection;

(iii) The approximate minimum, maximum, and present depth and elevation of the impounded water and CCR since the previous annual inspection;

(iv) The storage capacity of the impounding structure at the time of the inspection;

(v) The approximate volume of the impounded water and CCR at the time of the inspection;

(vi) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit and appurtement structures; and


(vii) Any other change(s) which may have affected the stability or operation of the impounding structure since the previous annual inspection.

(3) Timeframes for conducting the initial inspection—(i) Existing CCR surface impoundments. The owner or operator of the CCR unit must complete the initial inspection required by paragraphs (b)(1) and (2) of this section no later than January 18, 2016.

(ii) New CCR surface impoundments and any lateral expansion of a CCR surface impoundment. The owner or operator of the CCR unit must complete the initial annual inspection required by paragraphs (b)(1) and (2) of this section is completed no later than 14 months

APPENDIX B

Precipitation Estimate

Estimates and their confidence intervals can be displayed directly as tables or graphs via separate tabs. Links to supplementary information (such as ASCII grids of estimates, associated temporal distributions of heavy rainfall, time series data at observation sites, cartographic maps, etc.) can also be found.

NOAA Atlas 14 documents provide additional information on the underlying data and functioning of the PFDS.

PFDS is compatible with all modern web browsers. However, some browsers offer a smoother experience than others. We recommend Chrome, Firefox, Internet Explorer 10+, and Safari.

Main Link Categories
Home OWP(OHD)

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service Office of Water Prediction (OWP) 1325 East West Highway Silver Spring, MD 20910 Page Author: HDSC webmaster Disclaimer Credits Glossary Privacy Policy About Us Career Opportunities

NOAA Atlas 14, Volume 2, Version 3 Location name: Indianapolis, Indiana, USA* Latitude: 39.7067°, Longitude: -86.1957° Elevation: 679.83 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

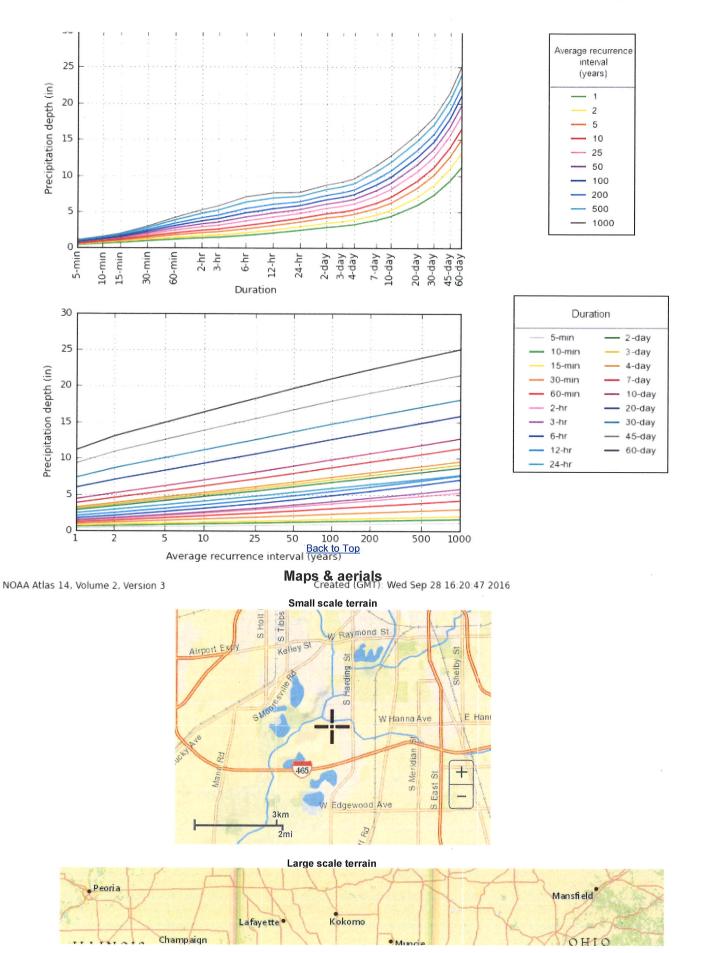
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

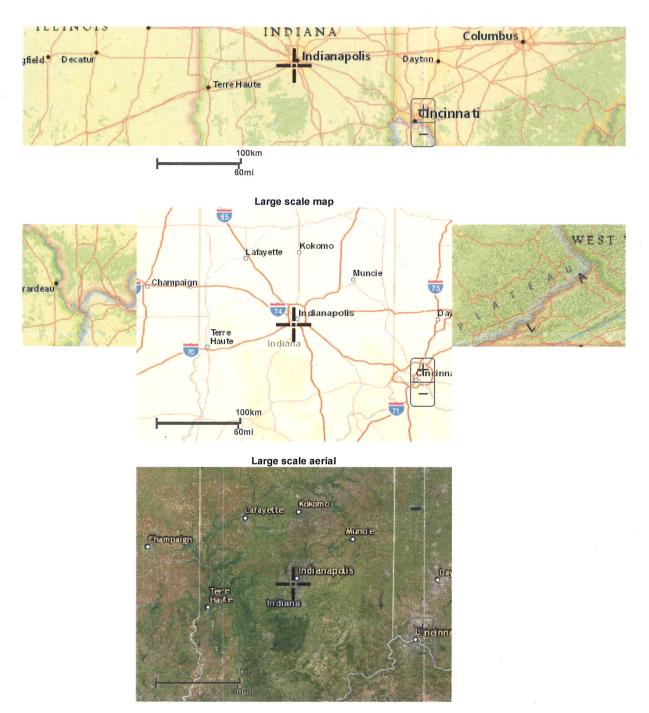
PF tabular | PF graphical | Maps & aerials

PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration	Average recurrence interval (years)											
Duration	1	2	5	10	25	50	100	200	500	1000		
5-min	0.381	0.453	0.542	0.613	0.703	0.775	0.844	0.917	1.01	1.09		
	(0.343–0.425)	(0.408-0.506)	(0.487-0.605)	(0.549–0.682)	(0.625–0.784)	(0.683–0.866)	(0.738-0.945)	(0.793–1.03)	(0.863–1.15)	(0.911–1.24)		
10-min	0.592	0.708	0.843	0.946	1.08	1.18	1.27	1.37	1.49	1.58		
	(0.532–0.661)	(0.637–0.789)	(0.757–0.939)	(0.847–1.05)	(0.956–1.20)	(1.04–1.31)	(1.11–1.42)	(1.18–1.54)	(1.27–1.69)	(1.33–1.80)		
15-min	0.725	0.865	1.04	1.16	1.33	1.45	1.58	1.70	1.86	1.98		
	(0.652–0.810)	(0.780-0.965)	(0.930–1.15)	(1.04–1.30)	(1.18–1.48)	(1.28–1.62)	(1.38–1.77)	(1.47–1.91)	(1.58–2.10)	(1.66-2.25)		
30-min	0.960	1.16	1.42	1.62	1.88	2.08	2.28	2.48	2.76	2.96		
	(0.863–1.07)	(1.04–1.29)	(1.27–1.58)	(1.45–1.80)	(1.67–2.09)	(1.83–2.32)	(1.99–2.55)	(2.15–2.79)	(2.35–3.12)	(2.49–3.38)		
60-min	1.17	1.42	1.78	2.06	2.43	2.74	3.05	3.37	3.81	4.16		
	(1.05–1.31)	(1.28–1.59)	(1.60–1.98)	(1.84–2.29)	(2.16–2.71)	(2.42–3.06)	(2.66-3.41)	(2.92–3.79)	(3.24–4.31)	(3.49–4.74)		
2-hr	1.38	1.66	2.09	2.43	2.91	3.30	3.71	4.15	4.76	5.25		
	(1.24–1.54)	(1.50–1.86)	(1.88–2.33)	(2.17–2.70)	(2.58–3.23)	(2.90–3.67)	(3.22–4.13)	(3.55-4.62)	(3.99–5.34)	(4.33–5.94)		
3-hr	1.46	1.76	2.22	2.59	3.11	3.55	4.01	4.50	5.19	5.76		
	(1.31–1.63)	(1.59–1.97)	(2.00-2.48)	(2.32–2.88)	(2.76–3.46)	(3.12–3.94)	(3.48–4.47)	(3.84–5.03)	(4.34–5.86)	(4.72–6.55)		
6-hr	1.73	2.09	2.64	3.08	3.72	4.26	4.83	5.44	6.33	7.04		
	(1.57–1.93)	(1.89–2.33)	(2.38–2.94)	(2.77-3.42)	(3.31–4.12)	(3.74–4.72)	(4.19–5.36)	(4.64–6.06)	(5.26-7.09)	(5.73–7.96)		
12-hr	2.06	2.48	3.08	3.57	4.25	4.82	5.41	6.02	6.90	7.59		
	(1.87–2.28)	(2.26–2.75)	(2.80–3.41)	(3.23–3.94)	(3.81–4.69)	(4.27–5.31)	(4.74–5.97)	(5.20–6.69)	(5.83-7.72)	(6.30-8.55)		
24-hr	2.44	2.92	3.58	4.08	4.76	5.30	5.84	6.39	7.12	7.68		
	(2.28–2.62)	(2.73–3.14)	(3.33–3.84)	(3.80–4.38)	(4.42–5.11)	(4.91–5.69)	(5.39–6.27)	(5.87–6.85)	(6.50-7.80)	(6.98-8.64)		
2-day	2.84	3.40	4.14	4.71	5.47	6.07	6.66	7.27	8.07	8.68		
	(2.66–3.04)	(3.18–3.64)	(3.87-4.43)	(4.39–5.03)	(5.09–5.84)	(5.63–6.47)	(6.16-7.12)	(6.69–7.77)	(7.39-8.63)	(7.91–9.30)		
3-day	3.04	3.63	4.39	4.98	5.77	6.39	7.02	7.64	8.47	9.11		
	(2.85–3.24)	(3.40–3.87)	(4.12-4.68)	(4.66–5.31)	(5.40-6.15)	(5.96–6.80)	(6.52-7.47)	(7.07-8.14)	(7.80-9.03)	(8.35–9.72)		
4-day	3.23	3.85	4.64	5.25	6.08	6.72	7.37	8.01	8.87	9.53		
	(3.04–3.44)	(3.63–4.10)	(4.37–4.94)	(4.94–5.58)	(5.70–6.45)	(6.29–7.13)	(6.88–7.82)	(7.45–8.51)	(8.21–9.43)	(8.79–10.1)		
7-day	3.82	4.54	5.45	6.17	7.14	7.91	8.69	9.47	10.5	11.4		
	(3.59–4.07)	(4.26–4.84)	(5.11–5.80)	(5.78–6.56)	(6.67–7.58)	(7.37–8.39)	(8.07–9.22)	(8.78–10.1)	(9.72–11.2)	(10.4–12.1)		
10-day	4.36	5.17	6.19	6.99	8.07	8.92	9.77	10.6	11.8	12.7		
	(4.10-4.65)	(4.87–5.52)	(5.83–6.60)	(6.57–7.45)	(7.56–8.59)	(8.34–9.49)	(9.12–10.4)	(9.90–11.3)	(10.9–12.6)	(11.7–13.6)		
20-day	5.96	7.05	8.31	9.29	10.6	11.6	12.6	13.6	14.9	15.8		
	(5.63–6.33)	(6.65–7.49)	(7.84–8.82)	(8.75–9.86)	(9.95–11.2)	(10.9–12.3)	(11.8–13.3)	(12.7–14.4)	(13.8–15.8)	(14.7–16.8)		
30-day	7.34	8.64	10.1	11.1	12.6	13.6	14.7	15.7	17.1	18.1		
	(6.93–7.77)	(8.16–9.15)	(9.48–10.6)	(10.5–11.8)	(11.8–13.3)	(12.8–14.4)	(13.8–15.6)	(14.7–16.7)	(15.9–18.1)	(16.7–19.2)		
45-day	9.28	10.9	12.6	13.8	15.5	16.7	17.9	19.0	20.4	21.4		
	(8.79–9.81)	(10.3–11.5)	(11.9–13.3)	(13.1–14.6)	(14.6–16.3)	(15.7–17.6)	(16.8–18.8)	(17.8–20.0)	(19.1–21.6)	(20.0-22.7)		
60-day	11.1	13.0	14.9	16.4	18.2	19.6	21.0	22.2	23.9	25.0		
	(10.5–11.7)	(12.3–13.8)	(14.1–15.8)	(15.5–17.3)	(17.2–19.2)	(18.5–20.7)	(19.7–22.1)	(20.9–23.5)	(22.3–25.2)	(23.4–26.5)		


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.


Back to Top

PF graphical

Precipitation Frequency Data Server

http://hdsc.nws.noaa.gov/hdsc/pfds_printpage.html?lat=39.7067&lon=-86.1957&data... 9/28/2016

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

APPENDIX C

HydroCAD Model Analysis

SCS ENGINEERS

					Calc. No Rev. No		
No.	25216140.00	Job IP.	&L - Harding Street Sta	tion	By KR		9/2
	P&L	Subject			Chk'd		10/12/16
11 I.	ræL	Subject		Tyuraune Study	Clik d	Br Date	10/12/10
Purpo	ne en e						
and a second second second second	perfect a pray and a providential with the base performance at the		arding Street Generating	g Station can adequ	uately manage flov	v into and out of t	he ponds
(during the design s	storm event, specified	1 by 40 CFR 257.82.				
	•						
Appro				4	- CC 1		
			basin. Use HydroCAD t structures and determine				
	the superior design of some superior design of the		methodologies to genera				
e	ach pond. Hydroc	AD uses the TK-20	methodologies to gener	ate the hydrograph	I. The polids are si	ilowii ili rigure 2.	
Accum	nptions						
**	and the same product a balance of some and the second se	Street Generating Sta	tion has been converted	to burning natural	gas No CCR is s	ent to	
			mount of rain water that			a construction of the construction of the second	
*	The berms arc	ound the CCR ponds	are all above the surrour	nding topography	and there is no run	-on into the CCR	ponds.
*	Ponds 2 and 4	are out of service. F	Runoff from Pond 2 drai	ins to Pond 2A/2B	and runoff from F	ond 4 drains to P	ond 3.
			ed in the hydraulic analy	and the second			
*	The elevation	of the crest of the be	rm around each pond is	below. Crest elev	ations based on su	rvey information	
	provided by II	P&L.					
	Pond		Crest Elevation				
	1		685				
	2		714				
	2A/2B		685				
	3		684				
	4		683				
*	The berm sepa	arating Ponds 2A and	12B has been partially r	emoved and this is	s now one pond, Po	ond 2A/2B.	
*	The berms sep	parating ponds 4, 4A	and 4B have been remo	ved and now this	is one pond, Pond	4.	
*							1 0
T			h CCR to the bottom of	the outlet structure	e. The CCR slopes	s to the outlet at a	slope of
	approximately	0.23%.					
*	Pond 2 has be	en filled with CCR to	o the bottom of the outle	t structure The C	CR slopes to the o	utlet at a slope of	•
	approximatel	and the second			ere slopes to the o	utiet at a slope of	
	upproximator	y 0.570					
*	According to	IP&L personnel. Pon	d 2A/2B is classified as	a low hazard pote	ential. Ponds 1 and	3 are significant	hazard
		Ponds 2 and 4 are h		F		8	
	1						
*	Structures clas	ssified as high hazard	l are required to contain	the probable max	imum flood (PMP)) without overtop	ping.
	Structures class	ssified as significant	hazards are required to	contain the 1,000-	yr storm event wit	hout overtopping.	
			s are required to contain		Contacts, the party because an effect an estimate of party and the state of the state of the	and another and an and an and a second se	
*	According to	the General Guideline	es for New Dams and In	nprovements to Ex	cisting Dams in Inc	liana 2001, for a	time of
	concentration	(Tc) less than 6 hour	s, the 6-hour storm ever	nt is used. All of the	he ponds at Hardin	g Street Station	
	have a Tc less	than 6 hours.					
*			1,000 year storm event	for Indianapolis, I	ndiana = 7.04 inch	es of precipitatio	n
	for the 6-hr sto	orm.					

Sheet No.

1

SCS ENGINEERS

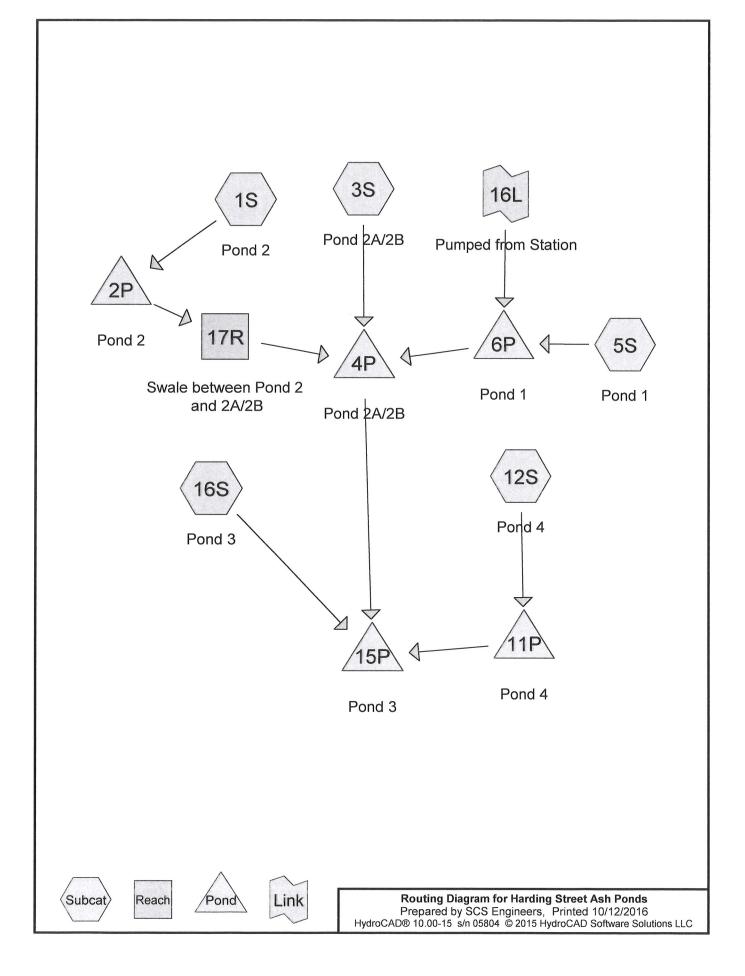
Job IP&L - Harding Street Station

Subject CCR Impoundment Hydraulic Study

Job No.

Client

25216140.00


IP&L

Sheet No.	2	
Calc. No.		
Rev. No.		
By KRG	Date	9/27/16
Chk'd BP	Date 10)/12/16

*	According t	to NOAA Atlas 14, the	100 year storm ev	ent for Indianapolis, I	ndiana = 4.83 inches	of precipitation	
	for the 6-hr	and a processing on the second s					
*	There is an	area near the station wh	nere stormwater is	collected and pumped	to the CCR ponds.	According to IP&L	
	personnel, t	his flow is assumed to l	be a constant flow	of 44 gpm (0.1 cfs) in	nto Pond 1.		_
*	The General	l Guidelines for New D	ams and Improve	ments to Existing Dam	ns in Indiana, 2001, c	all for a Type B storr	n e
							-
*	Outlets			nation and 8/23/16 SC		t	-
	Pond 1	and the second		a a 36" dia. CMP culve	the second s		
•	Pond 2		CONTRACTOR CONT	a a swale cut in the ber	The second s		692
	-			s from the outlet of Po			-
	Pond 2A/2E	CONTRACTOR ADDRESS OF CONTRACTOR OF		30" dia. CMP culvert a	Construction and the second construction of the second second second second second second second second second		1
	Pond 4	a na mana a fanina mana ana barana na barana na		le excavated in the ber	m that is 10 ft wide a	at the bottom at $EL =$	67
	D 10	and 4:1 side slopes	and the second				
	Pond 3			ture via a 5-foot long			outl
and and a second		of the concrete stru	cture is three 12"	diameter corrugated m	ietal pipes that lead to	o the White River.	-
T1							
Contract of the second second		ours for each pond was	a service of the serv	AutoCAD to trace the	e outline of each ponc	and determine	
the a	rea of the co	ntours within the pond					-
Ponc	1 1			Pond 3			+
	ation	Area (ac)		Elevation	A rea (aa)		-
685		7.3		<u>684</u>	Area (ac) 8.8		-
683		1.0		680	8.1		-
681		0.1		676	7.4		
081		0.1					-
Ponc	12			672	6.8		
	ation	Area (ac)		Pond 4			-
714		20.6		Elevation	Area (ac)		
714		19.4		683	28.2		
705		19.4		682	24.0		-
697		15.7		681	15.8		
697 696		14.5		680	7.8		-
696		12.0		679	0.1		-
693 694		8.5		0/7			
693		4.2					-
692		0.0					-
572							-
Pone	12A/2B						-
Elev		Area (ac)					1
685		3.9					1
683		3.6					-
681		3.2					1
		2.9					-
and a second second second							
679							-
and a second second second							
and a second second second							

	5 C	S	E N	G		1 = 1 :		S				· Constanting of the	eet No				
					44400		ANT DE AL						lc. No				
N	0.50	1 (1 40 0	0									and the second se	v. No.				
No.		16140.0	0		Job IP&L - Harding Street Station Subject CCR Impoundment Hydraulic Study							KR		Date	and the second second second	-	
ent	IP&L				Subjec	t CCR	Impour	ndment I	Iydrau	lic Stud	у	Ch	k'd	BP	Date	10/12/16	52
1 1															,,		
																	1
Resu	lts fro	m Hydro	oCAD (100-yr §	Storm	Event)											
	Pond			Water	Eleva	tion in P	ond	Pon	d Freel	board (f	t)	Por	nd Dis	charge Ra	te (cfs)		
	Pond 2	A/2B			1	682.45				2.55	5			15.6			1
																	-
Resu	lts fro	n Hydro	oCAD (1.000-vi	r Stor	m Event)										-
1	Pond	J		a contraction of the local diversion of the l		tion in P		Pon	d Ereel	ooard (f	4)	Por	nd Die	charge Ra	te (cfs)		1
	Pond 1					683.52		1 010		1.48		1.01		12.5			-
-	Pond 3					680.29				3.71				25.0			-
	I Ond S					080.29				5.71				23.0			-
+																	
									1								-
			rd amoun														-
							k by U	SDA Na	tural R	esource	s Conser	vation Se	ervice	(NRCS),			_
	C	hapter 1	1 - Ponds	and Res	ervoir	S.											
															ļ		_
		nerefore,	all of the	e ponds a	at Haro	ding Stre	et Statio	on have a	idequa	te freeb	oard for	the desig	n stor	m event.			
														Marco de como mando			
									1								1
T																	T
1								14									1
++													-				-
							+										-
																	-
																	-
																	-
													_				_
																	-
																	-
						1	1		1				-	++			1
															1		1
	~																-

Harding Street Station – Ash Ponds Routing Diagram for HydroCAD Model

100-yr Storm Event Pond 2A/2B Modeling for Low Hazard Structures

Summary for Subcatchment 1S: Pond 2

Runoff = 66.50 cfs @ 2.69 hrs, Volume= 8.291 af, Depth= 4.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs Type B 6-hr 100-yr Rainfall=4.83"

_	Area	(ac) C	N Des	cription		
*	20.	600 10	0 Ash			
	20.	600	100.	00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	2.7	100	0.0030	0.62		Sheet Flow,
_	24.0	1,600	0.0030	1.11		Smooth surfaces n= 0.011 P2= 2.92" Shallow Concentrated Flow, Paved Kv= 20.3 fps
	26.7	1,700	Total			

Summary for Pond 2P: Pond 2

Inflow Are	a =	20.600 ac,100.00%	Impervious, Inflow D	epth = 4.83" for 10	0-yr event
Inflow	=	66.50 cfs @ 2.69	hrs, Volume=	8.291 af	
Outflow	=	66.50 cfs @ 2.69	hrs, Volume=	8.292 af, Atten= 0%,	Lag= 0.0 min
Primary	=	66.50 cfs @ 2.69	hrs, Volume=	8.292 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 694.39' @ 2.69 hrs Surf.Area= 9.873 ac Storage= 0.000 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (187.5 - 187.5)

Volume	Invert /	Avail.Storage	Storage	Description	
#1	692.00'	0.000 af		-	a (Prismatic) Listed below (Recalc)
			300.300	at Overall	x 0.0% Voids
Elevation	Surf.Area	a Inc.St	tore	Cum.Store	
(feet)	(acres) (acre-fe	eet)	(acre-feet)	
692.00	0.000	0.	000	0.000	
693.00	4.200) 2.	100	2.100	
694.00	8.500	D 6.	350	8.450	
695.00	12.000	D 10.1	250	18.700	
696.00	14.500	D 13.	250	31.950	
697.00	15.700		100	47.050	
705.00	18.000			181.850	
710.00	19.400		500	275.350	
714.00	20.600	D 80.	000	355.350	
Device F	Routing	Invert Ou	utlet Devic	es	
#1 F	Primary	692.00' Cu	istom We	ir/Orifice, C	v= 2.62 (C= 3.28)
		He	ad (feet)	0.00 2.00	4.00 6.00 10.00 22.00
		VVi	dth (feet)	2.00 10.00) 18.00 26.00 42.00 90.00

Primary OutFlow Max=66.44 cfs @ 2.69 hrs HW=694.39' TW=693.10' (Dynamic Tailwater) **1=Custom Weir/Orifice** (Weir Controls 66.44 cfs @ 4.10 fps)

Summary for Subcatchment 3S: Pond 2A/2B

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 14.76 cfs @ 2.38 hrs, Volume= 1.570 af, Depth= 4.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs Type B 6-hr 100-yr Rainfall=4.83"

_	Area	(ac)	CN	Desc	cription		
*	3.	900	100				
	3.	900		100.	00% Impe	rvious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.0						Direct Entry, Pond 2A

Summary for Pond 4P: Pond 2A/2B

Inflow Area =		31.800 ac,100.00% Impervious, Inflow Depth > 4.86" for 100-yr event
Inflow	=	80.16 cfs @ 2.69 hrs, Volume= 12.875 af
Outflow	=	15.55 cfs @ 5.04 hrs, Volume= 10.600 af, Atten= 81%, Lag= 140.5 min
Primary	=	15.55 cfs @ 5.04 hrs, Volume= 10.600 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Starting Elev= 680.00' Surf.Area= 3.050 ac Storage= 2.975 af Peak Elev= 682.45' @ 5.04 hrs Surf.Area= 3.490 ac Storage= 10.955 af (7.980 af above start)

Plug-Flow detention time= 442.1 min calculated for 7.625 af (59% of inflow) Center-of-Mass det. time= 275.3 min (487.9 - 212.6)

Volume	Invert	Avail.Storag	ge Stor	prage Description
#1	679.00'	20.400	af Cus	stom Stage Data (Prismatic) Listed below (Recalc)
			~	
Elevation	n Surf.Ar	ea Inc	.Store	Cum.Store
(feet) (acre	es) (acr	e-feet)	(acre-feet)
679.00) 2.9	00	0.000	0.000
681.00	3.2	00	6.100	6.100
683.00	3.6	00	6.800	12.900
685.00) 3.9	00	7.500	20.400
Device	Routing	Invert	Outlet D	Devices
#1	Primary	680.00'	30.0" R	Round Culvert
	-		L= 50.0'	D' CPP, projecting, no headwall, Ke= 0.900
			Inlet / O	Dutlet Invert= 680.00' / 679.80' S= 0.0040 '/' Cc= 0.900
			n= 0.025	25 Corrugated metal, Flow Area= 4.91 sf
				-
Drimont	OutElour Max	-1E EE ofo /	a FOA h	hra = 1 N A - 682 A E = T N - 670 78! (Dynamia Tailwatar)

Primary OutFlow Max=15.55 cfs @ 5.04 hrs HW=682.45' TW=679.78' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 15.55 cfs @ 4.02 fps)

Summary for Subcatchment 5S: Pond 1

Runoff 27.03 cfs @ 2.49 hrs, Volume= 2.938 af, Depth= 4.83" Ξ

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs Type B 6-hr 100-yr Rainfall=4.83"

	Area	(ac) C	N Des	cription		
*	7.	300 10	00 Ash			
	7.	300	100.	00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.3	100	0.0200	1.31		Sheet Flow, Ash
	9.4	510	0.0020	0.91		Smooth surfaces n= 0.011 P2= 2.92" Shallow Concentrated Flow, Ash Paved Kv= 20.3 fps
	10.7	610	Total			

Page 19

Summary for Pond 6P: Pond 1

Inflow Area = 7.300 ac,100.00% Impervious, Inflow Depth > 5.10" for 100-yr event Inflow = 27.13 cfs @ 2.49 hrs, Volume= 3.104 af Outflow = 9.48 cfs @ 2.88 hrs, Volume= 3.014 af, Atten= 65%, Lag= 23.4 min Primary = 9.48 cfs @ 2.88 hrs, Volume= 3.014 af									
Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Starting Elev= 681.50' Surf.Area= 0.325 ac Storage= 0.106 af Peak Elev= 683.25' @ 2.88 hrs Surf.Area= 1.790 ac Storage= 1.450 af (1.343 af above start)									
Plug-Flow detention time= 146.2 min calculated for 2.908 af (94% of inflow)									
Center-of-Mass det. time= 110.7 min(306.1 - 195.5)									
Volume Invert Avail.Storage Storage Description									
#1 681.00' 9.400 af Custom Stage Data (Prismatic) Listed below (Recalc)									
Elevation Surf.Area Inc.Store Cum.Store									
(feet) (acres) (acre-feet) (acre-feet)									
681.00 0.100 0.000 0.000									
683.00 1.000 1.100 1.100									
685.00 7.300 8.300 9.400									
Device Routing Invert Outlet Devices									
#1 Primary 681.50' 36.0" Round Culvert									
L= 50.0' CPP, projecting, no headwall, Ke= 0.900									
Inlet / Outlet Invert= 681.50' / 681.40' S= 0.0020 '/' Cc= 0.900									
n= 0.025 Corrugated metal, Flow Area= 7.07 sf									
Primary OutFlow Max=9.48 cfs @ 2.88 hrs $HW=683.25'$ TW=681.75' (Dynamic Tailwater)	Primary OutFlow Max=9.48 cfs @ 2.88 hrs $HW=683.25'$ TW=681.75' (Dynamic Tailwater)								

Primary OutFlow Max=9.48 cfs @ 2.88 hrs HW=683.25' TW=681.75' (Dynamic Tailwater)

Summary for Pond 11P: Pond 4

Inflow Area =		28.200 ac,100.00% Impervious, Inflow Depth = 4.83" for 100-yr event
Inflow	=	93.42 cfs @ 2.66 hrs, Volume= 11.351 af
Outflow	=	41.88 cfs @ 3.05 hrs, Volume= 11.346 af, Atten= 55%, Lag= 23.4 min
Primary	=	41.88 cfs @ 3.05 hrs, Volume= 11.346 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 679.99' @ 3.09 hrs Surf.Area= 7.724 ac Storage= 3.874 af

Plug-Flow detention time= 135.9 min calculated for 11.346 af (100% of inflow) Center-of-Mass det. time= 135.8 min (321.0 - 185.2)

Volume	Invert	Avail.Storag	e Storage	e Description			
#1	679.00'	61.750 a	af Custon	n Stage Data	(Prismatic) Listed	below (Recalc)	
				-			
Elevatior		ea Inc	Store	Cum.Store			
(feet) (acre	es) (acre	e-feet)	(acre-feet)			
679.00	0.1	00	0.000	0.000			
680.00	7.8	00	3.950	3.950			
681.00) 15.8	00 1	1.800	15.750			
682.00) 24.0	00 1	9.900	35.650			
683.00) 28.2	00 2	6.100	61.750			
Device	Routing	Invert	Outlet Devi	ces			
#1	Primary				/= 2.62 (C= 3.28)		
			-lead (feet)	0.00 4.00			
		,	Width (feet)) 10.00 42.0	0		

Primary OutFlow Max=41.87 cfs @ 3.05 hrs HW=679.99' TW=679.20' (Dynamic Tailwater) **1=Custom Weir/Orifice** (Weir Controls 41.87 cfs @ 3.03 fps)

Summary for Subcatchment 12S: Pond 4

Runoff = 93.42 cfs @ 2.66 hrs, Volume= 11.351 af, Depth= 4.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs Type B 6-hr 100-yr Rainfall=4.83"

_	Area	(ac) C	N Dese	cription		
*	28.	200 10	00 Ash			
	28.200 100.00% Impervious Area					l
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	2.9	100	0.0025	0.57	<u> </u>	Sheet Flow, Ash
_	21.3	1,300	0.0025	1.02	-	Smooth surfaces n= 0.011 P2= 2.92" Shallow Concentrated Flow, Ash Paved Kv= 20.3 fps
	24.2	1,400	Total			

Summary for Pond 15P: Pond 3

Inflow Area =		68.800 ac,100.00% Impervious, Inflow Depth > 4.45" for 100-yr event
Inflow	=	59.95 cfs @ 3.08 hrs, Volume= 25.488 af
Outflow	=	23.66 cfs @ 6.02 hrs, Volume= 21.473 af, Atten= 61%, Lag= 177.0 min
Primary	=	23.66 cfs @ 6.02 hrs, Volume= 21.473 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Starting Elev= 678.50' Surf.Area= 7.837 ac Storage= 47.447 af Peak Elev= 679.83' @ 6.02 hrs Surf.Area= 8.070 ac Storage= 57.999 af (10.552 af above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 215.5 min (583.9 - 368.4)

Volume	Invert	Avail.Storage	Storage [Description			
#1	672.00'	93.200 a	Custom S	Stage Data	(Prismatic) Listed b	pelow (Recalc)	
Elevatio	n Surf.Ar	rea Inc.S	Store C	um.Store			
(feet	t) (acre	es) (acre-	feet) (a	acre-feet)			
672.00	0 6.8	800 C	.000	0.000			
676.00	0 7.4	00 28	.400	28.400			
680.00	0 8.1	00 31	.000	59.400			
684.00	0 8.8	33 33	.800	93.200			
Device	Routing	Invert C	utlet Device	S			
#1	Device 2	678.50' 5	0' long Sha	rp-Crested	Rectangular Weir	2 End Contraction(s)	
#2	Primary	673.00' 1	2.0" Round	Culvert X	3.00		
		L	= 100.0' CF	PP, square	edge headwall, Ke=	= 0.500	
		Ir	let / Outlet I	nvert= 673.	00' / 672.00' S= 0.0	0100 '/' Cc= 0.900	
		n	= 0.012 Ste	el, smooth,	Flow Area= 0.79 sf	f	
					· · · · ·		
Primary (OutFlow Ma	x=23 66 cts @	6(12 hre H)	N = 679.83'	(Free Discharge)		

Primary OutFlow Max=23.66 cfs @ 6.02 hrs HW=679.83' (Free Discharge) -2=Culvert (Passes 23.66 cfs of 24.18 cfs potential flow) -1=Sharp-Crested Rectangular Weir (Weir Controls 23.66 cfs @ 3.77 fps)

Summary for Link 16L: Pumped from Station

Inflow = 0.10 cfs @ 0.00 hrs, Volume= 0.165 af Primary = 0.10 cfs @ 0.00 hrs, Volume= 0.165 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs

Constant Inflow= 0.10 cfs

Summary for Subcatchment 16S: Pond 3

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 33.30 cfs @ 2.38 hrs, Volume= 3.542 af, Depth= 4.83"

	Area	(ac)	CN	Desc	cription		
*	8.	800	100				
	8.	800		100.	00% Impe	rvious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.0						Direct Entry, Pond 3

Summary for Reach 17R: Swale between Pond 2 and 2A/2B

 Inflow Area =
 20.600 ac, 100.00% Impervious, Inflow Depth =
 4.83" for 100-yr event

 Inflow =
 66.50 cfs @
 2.69 hrs, Volume=
 8.292 af

 Outflow =
 66.48 cfs @
 2.69 hrs, Volume=
 8.292 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Max. Velocity= 9.37 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.32 fps, Avg. Travel Time= 0.6 min

Peak Storage= 1,419 cf @ 2.69 hrs Average Depth at Peak Storage= 1.10' Bank-Full Depth= 4.00' Flow Area= 72.0 sf, Capacity= 1,472.08 cfs

2.00' x 4.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 4.0 '/' Top Width= 34.00' Length= 200.0' Slope= 0.0350 '/' Inlet Invert= 692.00', Outlet Invert= 685.00'

‡

1,000-yr Storm Event Pond 1 and 3 Modeling for Significant Hazard Structures

Summary for Subcatchment 1S: Pond 2

Runoff = 96.92 cfs @ 2.69 hrs, Volume= 12.085 af, Depth= 7.04"

_	Area	(ac) C	N Dese	cription		
*	20.	600 10	0 Ash			,
	20.600		100.00% Imper		rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	2.7	100	0.0030	0.62		Sheet Flow,
	24.0	1,600	0.0030	1.11		Smooth surfaces n= 0.011 P2= 2.92" Shallow Concentrated Flow, Paved Kv= 20.3 fps
	26.7	1,700	Total			

Page 3

Summary for Pond 2P: Pond 2

Inflow Are	ea =	20.600 ac,100	0.00% Impervious, Inflow	Depth = 7.04"	for 1,000-yr event
Inflow	=	96.92 cfs @	2.69 hrs, Volume=	12.085 af	-
Outflow	=	96.92 cfs @	2.69 hrs, Volume=	12.085 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	96.92 cfs @	2.69 hrs, Volume=	12.085 af	De la

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 694.84' @ 2.69 hrs Surf.Area= 11.441 ac Storage= 0.000 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (187.5 - 187.5)

Volume	Invert A	vail.Storage	Storag	e Description	
#1	692.00'	0.000 af	Custo	m Stage Data	(Prismatic) Listed below (Recalc)
			355.35	50 af Overall	k 0.0% Voids
Elevetien			4	0	
Elevation	Surf.Area			Cum.Store	
(feet)	(acres)	acre-1	feet)	(acre-feet)	
692.00	0.000	0	.000	0.000	
693.00	4.200	2	.100	2.100	
694.00	8.500	6	.350	8.450	
695.00	12.000	10	.250	18.700	
696.00	14.500	13	.250	31.950	
697.00	15.700	15	.100	47.050	
705.00	18.000	134	.800	181.850	
710.00	19.400	93	.500	275.350	
714.00	20.600	80	.000	355.350	
Device R	outing	Invert O	utlet Dev	rices	
#1 P	rimary	692.00' C	ustom W	/eir/Orifice, C	v= 2.62 (C= 3.28)
					4.00 6.00 10.00 22.00
					18.00 26.00 42.00 90.00
		vv		, <u>2.00</u> 10.00	10.00 20.00 42.00 00.00

Primary OutFlow Max=96.84 cfs @ 2.69 hrs HW=694.84' TW=693.30' (Dynamic Tailwater) **1=Custom Weir/Orifice** (Weir Controls 96.84 cfs @ 4.44 fps) Summary for Subcatchment 3S: Pond 2A/2B

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 21.51 cfs @ 2.38 hrs, Volume= 2.288 af, Depth= 7.04"

	Area	(ac)	CN	Dese	cription		
*	3.	900	100				
	3.	900		100.	00% Impe	rvious Area	1
	Тс	Leng		Slope			Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	0.0						Direct Entry, Pond 2A

Summary for Pond 4P: Pond 2A/2B

Inflow Are	ea =	31.800 ac,100	0.00% Impervious, Inflow I	Depth > 7.07'' for 1,000-yr event
Inflow	=	115.53 cfs @	2.69 hrs, Volume=	18.724 af
Outflow	=	21.39 cfs @	5.19 hrs, Volume=	16.091 af, Atten= 81%, Lag= 150.1 min
Primary	=	21.39 cfs @	5.19 hrs, Volume=	16.091 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Starting Elev= 680.00' Surf.Area= 3.050 ac Storage= 2.975 af Peak Elev= 683.29' @ 4.89 hrs Surf.Area= 3.643 ac Storage= 13.933 af (10.958 af above start)

Plug-Flow detention time= 396.1 min calculated for 13.116 af (70% of inflow) Center-of-Mass det. time= 267.4 min (487.0 - 219.6)

Volume	Invei	rt Ava	ail.Storag	je Stor	age Description		
#1	679.00)'	20.400	af Cus	tom Stage Data	(Prismatic) Listed below (F	Recalc)
Elevetia	- C		line	Oteres	Ourse Otherse		
Elevatio		f.Area		Store	Cum.Store		
(feet	t) (a	acres)	(acre	e-feet)	(acre-feet)		
679.0	0	2.900		0.000	0.000		
681.0	0	3.200		6.100	6.100		
683.0	0	3.600		6.800	12.900		
685.0	0	3.900		7.500	20.400		
Device	Routing		Invert	Outlet D	evices		
#1	Primary	6	80.00'	30.0" R	ound Culvert		
				L= 50.0'	CPP, projecting	, no headwall, Ke= 0.900	
						00' / 679.80' S= 0.0040 '/'	Cc = 0.900
						tal, Flow Area= 4.91 sf	86- 8.866
				n= 0.020	o con ugaleu me	(a), 110W AICa- 4.91 SI	
_							

Primary OutFlow Max=21.39 cfs @ 5.19 hrs HW=683.28' TW=680.21' (Dynamic Tailwater) -1=Culvert (Barrel Controls 21.39 cfs @ 4.37 fps)

Summary for Subcatchment 5S: Pond 1

Runoff = 39.40 cfs @ 2.49 hrs, Volume= 4.283 af, Depth= 7.04"

-	Area	(ac) C	N Dese	cription		
*	7.	300 10	0 Ash			
	7.300		100.00% Imperv		rvious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	100	0.0200	1.31		Sheet Flow, Ash
						Smooth surfaces n= 0.011 P2= 2.92"
	9.4	510	0.0020	0.91		Shallow Concentrated Flow, Ash
						Paved Kv= 20.3 fps
	10.7	610	Total			

Page 7

Summary for Pond 6P: Pond 1

Inflow Are	ea =	7.300 ac,100.00% Impervious, Inflow Depth > 7.31" for 1,000-yr event
Inflow	=	39.50 cfs @ 2.49 hrs, Volume= 4.448 af
Outflow	=	12.46 cfs @ 2.93 hrs, Volume= 4.351 af, Atten= 68%, Lag= 26.5 min
Primary	=	12.46 cfs @ 2.93 hrs, Volume= 4.351 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Starting Elev= 681.50' Surf.Area= 0.325 ac Storage= 0.106 af Peak Elev= 683.52' @ 2.93 hrs Surf.Area= 2.648 ac Storage= 2.054 af (1.948 af above start)

Plug-Flow detention time= 175.2 min calculated for 4.245 af (95% of inflow) Center-of-Mass det. time= 148.9 min (337.5 - 188.6)

Volume	Invert	Avail.Storage	e Storage Description
#1	681.00'	9.400 af	af Custom Stage Data (Prismatic) Listed below (Recalc)
Elevatio (feet			Store Cum.Store -feet) (acre-feet)
681.0	0 0.10	0 0	0.000 0.000
683.0	0 1.00	0 1	1.100 1.100
685.0	0 7.30	0 8	8.300 9.400
Device	Routing	Invert O	Outlet Devices
#1			36.0" Round Culvert _= 50.0' CPP, projecting, no headwall, Ke= 0.900 nlet / Outlet Invert= 681.50' / 681.40' S= 0.0020 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 7.07 sf
		10.10.0	

Primary OutFlow Max=12.46 cfs @ 2.93 hrs HW=683.52' TW=682.55' (Dynamic Tailwater)

Summary for Pond 11P: Pond 4

Inflow Area =		28.200 ac,100	0.00% Impervious, Inflow	Depth = 7.04"	for 1,000-yr event
Inflow	=	136.16 cfs @	2.66 hrs, Volume=	16.544 af	-
Outflow	=	57.36 cfs @	3.01 hrs, Volume=	16.153 af, Atte	en= 58%, Lag= 21.3 min
Primary	=	57.36 cfs @	3.01 hrs, Volume=	16.153 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 680.29' @ 6.37 hrs Surf.Area= 10.116 ac Storage= 6.544 af

Plug-Flow detention time= 238.0 min calculated for 16.137 af (98% of inflow) Center-of-Mass det. time= 234.0 min (419.2 - 185.2)

Volume	Invert	Avail.Stora		e Description	
#1	679.00'	61.750	af Custon	n Stage Data	Prismatic) Listed below (Recalc)
Elevatio	••••••		c.Store	Cum.Store	
(fee	t) (acro	es) (acr	e-feet)	(acre-feet)	
679.0	0 0.1	00	0.000	0.000	
680.0	0 7.8	00	3.950	3.950	
681.0	0 15.8	00	11.800	15.750	
682.0	0 24.0	00	19.900	35.650	
683.0	0 28.2	.00	26.100	61.750	
Device	Routing	Invert	Outlet Devi	ces	
#1	Primary	679.00'	Custom We	eir/Orifice, Cv	= 2.62 (C= 3.28)
			Head (feet)	0.00 4.00	
			Width (feet)) 10.00 42.00	

Primary OutFlow Max=57.36 cfs @ 3.01 hrs HW=680.21' TW=679.47' (Dynamic Tailwater) —1=Custom Weir/Orifice (Weir Controls 57.36 cfs @ 3.19 fps)

Summary for Subcatchment 12S: Pond 4

Runoff = 136.16 cfs @ 2.66 hrs, Volume= 16.544 af, Depth= 7.04"

	Area (ac) CN		N Dese	cription		
*	28.	200 10	00 Ash			
	28.200		100.	00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.9	100	0.0025	0.57	(0.0)	Sheet Flow, Ash
	21.3	1,300	0.0025	1.02		Smooth surfaces n= 0.011 P2= 2.92" Shallow Concentrated Flow, Ash Paved Kv= 20.3 fps
	24.2	1,400	Total			

Page 10

Summary for Pond 15P: Pond 3

Inflow Area	a =	68.800 ac,100.00% Impervious, Inflow Depth > 6.52" for 1,000-yr event
Inflow	=	85.92 cfs @ 3.03 hrs, Volume= 37.407 af
Outflow	=	24.98 cfs @ 6.50 hrs, Volume= 31.164 af, Atten= 71%, Lag= 208.4 min
Primary	=	24.98 cfs @ 6.50 hrs, Volume= 31.164 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Starting Elev= 678.50' Surf.Area= 7.837 ac Storage= 47.447 af Peak Elev= 680.29' @ 6.50 hrs Surf.Area= 8.150 ac Storage= 61.732 af (14.285 af above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 219.0 min (631.9 - 413.0)

Volume	Invert	Avail.Storage	Storage D	escription		
#1	672.00'	93.200 a	Custom S	tage Data	(Prismatic) Listed b	pelow (Recalc)
_				~		
Elevatio		a Inc.S		um.Store		
(fee	et) (acres	s) (acre-	feet) (a	cre-feet)		
672.0	6.80	0 0	.000	0.000		
676.0	0 7.40	0 28	.400	28.400		
680.0	0 8.10	0 31	.000	59.400		
684.0	0 8.80	0 33	.800	93.200		
Device	Routing	Invert C	utlet Devices	5		
#1	Device 2	678.50' 5	0' long Shar	p-Crested	Rectangular Weir	2 End Contraction(s)
#2	Primary	673.00' 1	2.0" Round	Culvert X	3.00	
	-	L	= 100.0' CP	P, square	edge headwall, Ke=	= 0.500
		Ir	let / Outlet Ir	vert= 673.	.00' / 672.00' S= 0.0	0100 '/' Cc= 0.900
		n	= 0.012 Stee	el, smooth,	Flow Area= 0.79 sf	F
	0 (F) M	04.00	0.501 1.04			

Primary OutFlow Max=24.98 cfs @ 6.50 hrs HW=680.29' (Free Discharge)

-**2=Culvert** (Barrel Controls 24.98 cfs @ 10.60 fps) **1=Sharp-Crested Rectangular Weir** (Passes 24.98 cfs of 36.27 cfs potential flow)

Summary for Link 16L: Pumped from Station

Inflow	=	0.10 cfs @	0.00 hrs, Volume=	0.165 af
Primary	=	0.10 cfs @	0.00 hrs, Volume=	0.165 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs

Constant Inflow= 0.10 cfs

Summary for Subcatchment 16S: Pond 3

Page 12

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff 48.53 cfs @ 2.38 hrs, Volume= 5.163 af, Depth= 7.04" =

	Area	(ac)	CN	Desc	cription		
*	8.	800	100				
8.800 100.00% Impervious Area							
	Tc	Leng		Slope			Description
-	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	0.0						Direct Entry, Pond 3

Summary for Reach 17R: Swale between Pond 2 and 2A/2B

 Inflow Area =
 20.600 ac,100.00% Impervious, Inflow Depth =
 7.04" for 1,000-yr event

 Inflow =
 96.92 cfs @
 2.69 hrs, Volume=
 12.085 af

 Outflow =
 96.90 cfs @
 2.69 hrs, Volume=
 12.085 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.02 hrs / 3 Max. Velocity= 10.31 fps, Min. Travel Time= 0.3 min Avg. Velocity = 5.87 fps, Avg. Travel Time= 0.6 min

Peak Storage= 1,879 cf @ 2.69 hrs Average Depth at Peak Storage= 1.30' Bank-Full Depth= 4.00' Flow Area= 72.0 sf, Capacity= 1,472.08 cfs

2.00' x 4.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 4.0 '/' Top Width= 34.00' Length= 200.0' Slope= 0.0350 '/' Inlet Invert= 692.00', Outlet Invert= 685.00'

‡