

EVOLVING ROLE OF THE THERMAL FLE/ET IN THE CLEAN ENERGY TRANSITION

AES INDIANA IRP STAKEHOLDER WORKSHOP #4

SEPTEMBER 19, 2022

BHAWRAMAETT BROEHM WÄRTSILÄ NORTH AMERICA BHAWRAMAETT.BROEHM@WARTSILA.COM

WÄRTSILÄ IN A NUTSHELL

74 GW

Power plant capacity delivered to **180** countries

12,000

Engines delivered across **5,000** power plants

180

Countries and power systems modelled worldwide

100

Power plants delivered in the USA

80+

Energy storage and optimisation systems installed globally

1834

Leading innovators in Energy and Marine for nearly 200 years

FLEXIBLE, RESILIENT GENERATION FOR TODAY & TOMORROW

- **<u>Responsive</u>** Synchronized to grid in 30 seconds, full power in a little as 90 seconds, AS capable, low minimum operating level, no start costs, no minimum uptimes or downtimes
- Resilient Operates on low gas pressure, supports areas "islanded" by transmission outages, provides black start capability during system emergencies (i.e., extreme weather)
- Quick-start Start and stop as many times needed, no impact on maintenance

- Modular unit size of 9 18 MW promotes redundancy and minimizes forced outage rates
- **Efficient** Fuel efficiency and output stable regardless of operating level or ambient temperature

FLEXIBLE, RESILIENT GENERATION FOR TODAY & TOMORROW

<u>Fuel Resiliency</u> – Ability to use multiple fuel types capable of online switching and operating with low or fluctuating gas pressures without impacting generator output

Fuel Flexible – Capable of using different fuels, including green future fuels for multi-day & seasonal storage

- Natural Gas
 Hydrogen Blends
- Fuel Oil

Biodiesel

Ammonia

Methanol

<u>**Practical & Future-Proof**</u> – Scalability of units capable of running on many different fuel types in extreme conditions makes these units an ideal grid solution.

Diving Deeper into Real-Time Power Systems

- Wärtsilä partnered with Ascend Analytics to study how dispatching resources to more volatile 5-minute prices uncovers the flexibility value of reciprocating engines compared to more traditional gas turbines.
 - Determine the "flexibility premium" realized in real-time market operations

Price Volatility at Representative Price Node in SPP

Quantifying Benefits of Real-Time Flexibility

Calculation of Net Present Value of Market Revenues less Costs (Variable & Fixed)*

	A. DA Only (\$M)			B. 5-Minute Dispatch (\$M)			C. Residual Revenue Requirement (\$M) [A+B]		
Tech	RICE	AERO	HDGT	RICE	AERO	HDGT	RICE	AERO	HDGT
20 Year NPV**	(\$159)	(\$129)	(\$125)	\$93	\$57	\$23	(\$66)	(\$72)	(\$102)

- The addition of 5-minute dispatch to the model shows that more flexible
 <u>RICE units are the least-cost resource</u>
 - 5-minute dispatch uncovered an additional \$93M of "hidden value."
 - The AERO and HDGT also have sub-hourly value, but much less than the RICE units (\$57M and \$23M of additional value, respectively)
 - The AEROs and HDGTs have start-up costs and longer min up/min down times. RICE units have no start costs and no min up/down times.

*Values are from an analysis in SPP, but similar directional conclusions can be made regarding sub-hourly value of flexibility in MISO due to comparable levels of variable renewable energy resources in their respective systems.

THE KEY STEPS TO **FRONT-LOAD NET ZERO**

Utilise P2X and flexible thermal plants to provide carbon neutral long-term storage.

CONVERT TO

SUSTAINABLE

FUELS

PHASE OUT FOSSIL FUELS

Running hours of legacy power plants decrease.

Curtailment of RES increase due to system inflexibility.

Keep adding renewables supported by flexibility.

2

BALANCING

AND STORAGE

INFLEXIBLE PLANTS **ADD THERMAL**

ADD RENEWABLES 0-20%

20-80%

3

PHASE OUT

SHARE OF RENEWABLE ENERGY SOURCES

Key Takeaways

- RICE units have valuable characteristics for renewable integration
 - Fast ramping and efficient
 - No start-up or shut-down costs
 - No min-up or min-down times
- Utilizing sub-hourly modeling in high renewable systems ensures the most appropriate generation resources are chosen to keep costs low and reliability high

Key Takeaways

- As utilities add more variable resources, the benefit to ratepayers of RICE technology will continue to grow.
 - The value of RICE units relative to turbines increases as load, renewable generation, and price volatility grow (more efficient and can turn off as needed)
- Utilities should:
 - Model their power systems sub-hourly
 - Factor flexibility benefits both costs and carbon into resource planning and procurement decisions (i.e., add flexibility premium)

